Skip to main content
Log in

Linear complexity over \({\mathbb {F}_{{q}}}\) and 2-adic complexity of a class of binary generalized cyclotomic sequences with good autocorrelation

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A class of binary sequences with period 2p is constructed using generalized cyclotomic classes, and their linear complexity, minimal polynomial over \({\mathbb {F}_{{q}}}\) as well as 2-adic complexity are determined using Gauss period and group ring theory. The results show that the linear complexity of these sequences attains the maximum when \(p\equiv \pm 1\pmod {8}\) and is equal to p+1 when \(p\equiv \pm 3(\bmod 8)\) over extension field. Moreover, the 2-adic complexity of these sequences is maximum. According to Berlekamp–Massey(B–M) algorithm and the rational approximation algorithm (RAA), these sequences have quite good cryptographic properties in the aspect of linear complexity and 2-adic complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding C.S., Helleseth T.: New generalized cyclotomy and its applications. Finite Fields Their Appl. 4(2), 140–166 (1998).

    Article  MathSciNet  Google Scholar 

  2. Ding C.S., Helleseth T., Shan W.J.: On the linear complexity of Legendre sequences. IEEE Trans. Inform. Theory 44(3), 1276–1278 (1998).

    Article  MathSciNet  Google Scholar 

  3. Du X.N., Chen Z.X.: Linear complexity of quaternary sequences generated using generalized cyclotomic classes modulo \(2p\). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 94(5), 1214–1217 (2011).

    Article  Google Scholar 

  4. Edemskiy V., Li C.L., Zeng X.Y.: The linear complexity of generalized cyclotomic binary sequences of period \({p}^{n}\). Des. Codes Cryptogr. 87(5), 1183–1197 (2019).

    Article  MathSciNet  Google Scholar 

  5. Holfer R., Winterholf A.: On the 2-adic complexity of the two-prime generator. IEEE Trans. Inform. Theory 64(8), 5957–5960 (2018).

    Article  MathSciNet  Google Scholar 

  6. Hu H.: Comments on “a new method to compute the 2-adic complexity of binary sequences’’. IEEE Trans. Inform. Theory 60(9), 5803–5804 (2014).

    Article  MathSciNet  Google Scholar 

  7. Jing, X.Y., Qiang, S.Y., Yang, M.H., Feng, K.Q.:Determined of the autocorrelation distribution and 2-adic complexity of generalized cyclotomic binary sequences of order \(2\) with period \(pq\). arXiv.2105.10947vl [cs.IT](30 May 2021)

  8. Ke P.H., Zhang J., Zhang S.Y.: On the linear complexity and the autocorrelation of generalized cyclotomic binary sequences of length \(2{{p}^{m}}\). Des. Codes Cryptogr. 67(3), 325–339 (2013).

    Article  MathSciNet  Google Scholar 

  9. Klapper A., Goresky M.: Feedback shift registers, 2-adic span, and combiners with memory. J. Cryptol. 10(2), 111–147 (1997).

    Article  MathSciNet  Google Scholar 

  10. Li D.D., Wen Q.Y., Zhang J.: Linear complexity of generalized cyclotomic quaternary sequences with period \(pq\). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 97(5), 1153–1158 (2014).

    Article  MathSciNet  Google Scholar 

  11. Massey J.L.: Shift-rigister synthesis and BCH decoding. IEEE Trans. Inform. Theroy 15, 122–127 (1969).

    Article  Google Scholar 

  12. Ou Y.Y., Xie X.Y.: Linear complexity of generalized cyclotomic sequences of period \(2{{p}^{m}}\). Des. Codes Cryptogr. 87(11), 2585–2596 (2019).

    Article  MathSciNet  Google Scholar 

  13. Qiang, S.Y., Jing, X.Y., Yang, M.H.: The 2-adic complexity of two classes of binary sequences with interleaved structure. arXiv.2011.12080vl [cs.IT](24 Nov 2020)

  14. Sun Y.H., Wang Q.Y.: A lowwer bound on the 2-adic complexity of the modified Jacobi sequences. Ctyptogr. Commun. 11(2), 337–349 (2018).

    Article  Google Scholar 

  15. Tian T., Wang Q.Y., Qi M.L.: 2-Adic complexity of binary m-sequences. IEEE Trans. Inform. Theory 56(1), 450–454 (2009).

    Article  MathSciNet  Google Scholar 

  16. Wang, Q.Y., Kong, W.G., Yan, Y.:Autocorrelation of a class of quaternary sequences of period \(2{{p}^{m}}\). arXiv.2002.00375vl [cs.IT](2 Feb 2020)

  17. Wang, Y., Yan, L.T., Tian, Q.Ding, L.P.: Autocorrelation and linear complexity of binary generalized cyclotomic sequences of order \(pq\). J. Math. (2021).

  18. Wang Q.Y., Lin D.D., Guang X.: On the linear complexity of Legendre sequences over \({F_q}\). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 97(7), 1627–1630 (2014).

    Article  Google Scholar 

  19. Wang Y., Xue G.N., Li S.B., Hui F.F.: The linear complexity of a new class of generalized cyclotomic sequence of order \(q\) with period \(2{{p}^{m}}\). J. Electron. Inform. Technol. 41(9), 2151–2155 (2019).

    Google Scholar 

  20. Xiao Zb., Zeng X.Y., Li C.L.: New generalized cyclotomic binary sequences of period \({p}^{2}\). Des. Codes Cryptogr. 86(7), 1483–1497 (2018).

    Article  MathSciNet  Google Scholar 

  21. Xiong H., Qu L., Li C.: A new method to compute the 2-adic complexity of binary sequences. IEEE Trans. Inform. Theory 60(4), 2399–2406 (2014).

    Article  MathSciNet  Google Scholar 

  22. Yang, M.H., Feng, K.Q.: Determination of 2-adic complexity of generalized binary sequences of order \(2\). arXiv.2007.15327vl [cs.IT](30 July 2020)

  23. Zhang J.W., Zhao C.A., Ma X.: Linear complexity of generalized cyclotomic binary sequences of length \(2{{p}^{m}}\). Appl. Algebra Eng. Commun. Comput. 21(2), 93–108 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the reviwers for their detailed and very helpful comments that improved this paper as well as the editors for all their works on this paper. The work of Yan Wang was supported by the National Natural Science Foundation of China under Grant 61902304. The work of Ziling Heng was supported by the National Natural Science Foundation of China under Grant 11901049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilin Han.

Additional information

Communicated by K. T. Arasu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Han, X., Wang, W. et al. Linear complexity over \({\mathbb {F}_{{q}}}\) and 2-adic complexity of a class of binary generalized cyclotomic sequences with good autocorrelation. Des. Codes Cryptogr. 90, 1695–1712 (2022). https://doi.org/10.1007/s10623-022-01068-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01068-6

Keywords

Mathematics Subject Classification

Navigation