Skip to main content
Log in

Reversible \(G^k\)-codes with applications to DNA codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we give a matrix construction method for designing DNA codes that come from group matrix rings. We show that with our construction one can obtain reversible \(G^k\)-codes of length kn,  where \(k, n \in \mathbb {N},\) over the finite commutative Frobenius ring R. We employ our construction method to obtain many DNA codes over \(\mathbb {F}_4\) that satisfy the Hamming distance, the reverse, the reverse-complement and the fixed GC-content constraints. Moreover, we improve many lower bounds on the sizes of some known DNA codes and we also give new lower bounds on the sizes of DNA codes of lengths 48, 56, 60, 64 and 72 for some fixed values of the Hamming distance d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboluion N., Smith D.H., Perkins S.: Linear and nonlinear constructions of DNA codes with Hamming distance d, constant GC-content and a reverse-complement constraint. Discrete Math. 312, 1062–1075 (2012).

    Article  MathSciNet  Google Scholar 

  2. Abualrub T., Ghrayeb A., Zeng X.N.: Construction of cyclic codes over \(GF(4)\) for DNA computing. J. Franklin Inst. 343, 448–457 (2006).

    Article  MathSciNet  Google Scholar 

  3. Adleman L.: Molecular computation of the solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    Article  Google Scholar 

  4. Adleman L., Rothemund P.W.K., Rowies S., Winfree E.: On applying molecular computation to the data encryption standard. J. Comput. Biol. 6, 53–63 (1999).

    Article  Google Scholar 

  5. Boneh, D., Dunworth, C., Lipton, R.: Breaking DES using molecular computer. Princenton CS Tech-Report, Number CS–TR–489–95 (1995)

  6. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265 (1997).

    Article  MathSciNet  Google Scholar 

  7. Blawat M., et al.: Forward error correction for DNA data storage. Procedia Comput. Sci. 80, 1011–1022 (2016).

    Article  Google Scholar 

  8. Cengellenmis Y., Dertli A., Dougherty S.T., Korban A., Sahinkaya S., Ustun D.: Reversible \(G\)-codes over the ring \({\cal{F}}_{j, k}\) with applications to DNA codes. Adv. Math. Commun. (2021). https://doi.org/10.3934/amc.2021056.

    Article  Google Scholar 

  9. Church G.M., Gao Y., Kossuri S.: Next-generation digital information storage in DNA. Science 337, 1628 (2012).

    Article  Google Scholar 

  10. Dougherty S.T., Gildea J., Taylor R., Tylshchak A.: Group rings, \(G\)-codes and constructions of self-dual and formally self-dual codes. Des. Codes Crypt. 86, 2115–2138 (2018).

    Article  MathSciNet  Google Scholar 

  11. Dougherty S.T., Korban A., Sahinkaya S., Ustun D.: "Group Matrix Ring Codes and Constructions of Self-Dual Codes ", Applicable Algebra in Engineering. Commun. Comput. (2021). https://doi.org/10.1007/s00200-021-00504-9.

    Article  MATH  Google Scholar 

  12. Gaborit P., King O.D.: Linear constructions for DNA codes. Theor. Comput. Sci. 334, 99–113 (2005).

    Article  MathSciNet  Google Scholar 

  13. Hurley T.: Group rings and rings of matrices. Int. J. Pure Appl. Math 31(3), 319–335 (2006).

    MathSciNet  MATH  Google Scholar 

  14. Kim H.J., Choi W.-H., Lee Y.: Designing DNA codes from reversible self-dual codes over \(GF(4)\). Discrete Math. 344, 112159 (2021).

    Article  MathSciNet  Google Scholar 

  15. King O.D.: Bounds for DNA codes with constant GC-content. Electron. J. Comb. 10, 33 (2003).

    Article  MathSciNet  Google Scholar 

  16. Korban A., Sahinkaya S., Ustun D.: Generator Matrices for the manuscript entitled “Reversible \(G^k\)-Codes with Applications to DNA Codes”. https://sites.google.com/view/adriankorban/generator-matrices.

  17. Korban A., Sahinkaya S., Ustun D.: The source code of Magma for the DNA codes from Table 1 for the manuscript entitled “Reversible \(G^k\)-Codes with Applications to DNA Codes. https://github.com/DnzUstn/Reversible-G-k--CodesWithApplicationsToDNACodes

  18. Korban A., Sahinkaya S., Ustun D.: An Application of the Virus Optimization Algorithm to the Problem of Finding Extremal Binary Self-Dual Codes. arXiv:2103.07739v1

  19. Limbachiya D., Benerjee K.G., Rao B., Gupta M.K.: On DNA Codes using the Ring Z4 + wZ4. In: 2018 IEEE International Symposium on Information Theory (ISIT), pp. 2401–2405, https://doi.org/10.1109/ISIT.2018.8437313 (2018)

  20. Limbachiya D., Rao B., Gupta M.K.: “The art of DNA strings”, Sixteen years of DNA coding theory, CoRR, vol. abs/1607.00266 [Online] arXiv:1607.00266 (2016)

  21. Marathe A., Condon A.E., Corn R.M.: On combinatorial DNA word design. J. Comput. Biol. 8, 201–220 (2001).

    Article  Google Scholar 

  22. Oztas E.S., Yildiz B., Siap I.: A novel approach for constructing reversible codes and applications to DNA codes over the ring \(\mathbb{F}_2[u]/(u^{2k}-1)\). Finite Fields Appl. 46, 217–234 (2017).

    Article  MathSciNet  Google Scholar 

  23. Tulpan D., Smith D.H., Montemanni R.: Thermodynamic post-processing versus GC-content pre-processing for DNA codes satisfying the Hamming distance and reverse-complement constraints. IEEE/ACM Trans. Comput. Biol. Bioinform. 11, 441–452 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Korban.

Additional information

Communicated by P. Charpin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korban, A., Şahinkaya, S. & Ustun, D. Reversible \(G^k\)-codes with applications to DNA codes. Des. Codes Cryptogr. 90, 1679–1694 (2022). https://doi.org/10.1007/s10623-022-01067-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01067-7

Keywords

Mathematics Subject Classification

Navigation