Skip to main content
Log in

A class of twisted generalized Reed–Solomon codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let \({\mathbb F}_{q}\) be a finite field of size q and \({\mathbb F}_{q}^*\) the set of non-zero elements of \({\mathbb F}_{q}\). In this paper, we study a class of twisted generalized Reed–Solomon code \(\mathcal {C}_\ell (D, k, \eta , \varvec{v})\subset {\mathbb F}_{q}^n\) generated by the following matrix

$$\begin{aligned} \left( \begin{array}{cccc} v_{1} &{} v_{2} &{} \cdots &{} v_{n} \\ v_{1} \alpha _{1} &{} v_{2} \alpha _{2} &{} \cdots &{} v_{n} \alpha _{n} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ v_{1} \alpha _{1}^{\ell -1} &{} v_{2} \alpha _{2}^{\ell -1} &{} \cdots &{} v_{n} \alpha _{n}^{\ell -1} \\ v_{1} \alpha _{1}^{\ell +1} &{} v_{2} \alpha _{2}^{\ell +1} &{} \cdots &{} v_{n} \alpha _{n}^{\ell +1} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ v_{1} \alpha _{1}^{k-1} &{} v_{2} \alpha _{2}^{k-1} &{} \cdots &{} v_{n} \alpha _{n}^{k-1} \\ v_{1}\left( \alpha _{1}^{\ell }+\eta \alpha _{1}^{q-{2}}\right) &{} v_{2}\left( \alpha _{2}^{\ell }+ \eta \alpha _{2}^{q-2}\right) &{}\cdots &{} v_{n}\left( \alpha _{n}^{\ell }+\eta \alpha _{n}^{q-2}\right) \end{array}\right) \end{aligned}$$

where \(0\le \ell \le k-1,\) the evaluation set \(D=\{\alpha _{1},\alpha _{2},\cdots , \alpha _{n}\}\subseteq {\mathbb F}_{q}^*\), scaling vector \(\varvec{v}=(v_1,v_2,\cdots ,v_n)\in ({\mathbb F}_{q}^*)^n\) and \(\eta \in {\mathbb F}_{q}^*\). The minimum distance and dual code of \(\mathcal {C}_\ell (D, k, \eta , \varvec{v})\) will be determined. For the special case \(\ell =k-1,\) a sufficient and necessary condition for \(\mathcal {C}_{k-1}(D, k, \eta , \varvec{v})\) to be self-dual will be given. We will also show that the code is MDS or near-MDS. Moreover, a complete classification when the code is near-MDS or MDS will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beelen P., Puchinger S., Nielsen J.: Twisted Reed-Solomon codes. In: IEEE ISIT, pp. 336–340 (2017).

  2. Beelen P., Bossert M., Puchinger S., Rosenkilde J.: Structural properties of twisted Reed-Solomon codes with applications to code-based cryptography. In: IEEE ISIT, pp. 946–950 (2018).

  3. Betsumiya K., Georgiou S., Gulliver T., Harada M., Koukouvinos C.: On self-dual codes over some prime fields. Discret. Math. 262(1–3), 37–58 (2003).

    Article  MathSciNet  Google Scholar 

  4. Dau S., Song W., Yuen C.: On the existence of MDS codes over small fields with constrained generator matrices. In: IEEE ISIT, pp. 1787–1791 (2014).

  5. Dodunekov S., Landjev I.: On near-MDS codes. J. Geom. 54(1–2), 30–43 (1994).

    MathSciNet  MATH  Google Scholar 

  6. Dodunekov S., Landjev I.: Near-MDS codes over some small fields. Discret. Math. 213, 55–65 (2000).

    Article  MathSciNet  Google Scholar 

  7. Fang W., Fu F.-W.: New constructions of MDS Euclidean self-dual codes from GRS codes and extended GRS codes. IEEE Trans. Inf. Theory 65(9), 5574–5579 (2019).

    Article  MathSciNet  Google Scholar 

  8. Fang W., Zhang J., Xia S.T., et al.: New constructions of self-dual generalized Reed-Solomon codes. Cryptogr. Commun. (2021). https://doi.org/10.1007/s12095-021-00549-0.

    Article  MATH  Google Scholar 

  9. Fang X., Lebed K., Liu H., Luo J.: New MDS self-dual codes over finite fields of odd characteristic. Des. Codes Cryptogr. 88(6), 1127–1138 (2020).

    Article  MathSciNet  Google Scholar 

  10. Georgiou S., Koukouvinos C.: MDS self-dual codes over large prime fields. Finite Fields Appl. 8(4), 455–470 (2002).

    Article  MathSciNet  Google Scholar 

  11. Grass M., Gulliver T.: On self-duls MDS codes. In: IEEE ISIT, pp. 1954–1957 (2008).

  12. Guenda K.: New MDS self-dual codes over finite fields. Des. Codes Cryptogr. 62(1), 31–42 (2012).

    Article  MathSciNet  Google Scholar 

  13. Gulliver T., Kim J., Lee Y.: New MDS or near-MDS self-dual codes. IEEE Trans. Inf. Theory 54(9), 4354–4360 (2008).

    Article  MathSciNet  Google Scholar 

  14. Harada M., Kharaghani H.: Orthogonal designs and MDS self-dual codes. Austral. J. Comb. 35, 57–67 (2006).

    MathSciNet  MATH  Google Scholar 

  15. Huang D., Yue Q., Niu Y.: New construction of LCD MDS codes from twisted Reed-Solomon codes. https://seta2020.etu.ru/assets/files/program/paper/paper-43.pdf.

  16. Huang D., Yue Q., Niu Y., et al.: MDS or NMDS self-dual codes from twisted generalized Reed-Solomon codes. Des. Codes Cryptogr. 89, 2195–2209 (2021).

    Article  MathSciNet  Google Scholar 

  17. Huffman W., Pless V.: Fundamentals of Error Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  18. Jin L., Kan H.: Self-dual near MDS codes from elliptic curves. IEEE Trans. Inf. Theory 65(4), 2166–2170 (2019).

    Article  MathSciNet  Google Scholar 

  19. Jin L., Xing C.: New MDS self-dual codes from generalized Reed-Solomon codes. IEEE Trans. Inf. Theory 63(3), 1434–1438 (2017).

    Article  MathSciNet  Google Scholar 

  20. Kim J., Lee Y.: Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Comb. Theory Ser. A 105(1), 79–95 (2004).

    Article  MathSciNet  Google Scholar 

  21. Kim J., Lee Y.: MDS self-dual codes. In: IEEE ISIT, 526 (2004).

  22. Kotsireas I., Koukouvinos C., Simos D.: MDS and near-MDS self-dual codes over large prime fields. Adv. Math. Commun. 3(4), 349–361 (2009).

    Article  MathSciNet  Google Scholar 

  23. Kokkala J., Krotov D., Östergård P.: On the classification of MDS codes. IEEE Trans. Inf. Theory 61(12), 6485–6492 (2015).

    Article  MathSciNet  Google Scholar 

  24. Lavauzelle J., Renner J.: Cryptanalysis of a system based on twisted Reed-Solomon codes. Des. Codes Cryptogr. 88(7), 1285–1300 (2020).

    Article  MathSciNet  Google Scholar 

  25. Lebed K., Liu H., Luo J.: Construction of MDS self-dual codes over finite fields. Finite Fields Appl. 59, 199–207 (2019).

    Article  MathSciNet  Google Scholar 

  26. Liu H., Liu S.: Construction of MDS twisted Reed-Solomon codes and LCD MDS codes. Des. Codes Cryptogr. 89, 2051–2065 (2021).

    Article  MathSciNet  Google Scholar 

  27. MacWilliams F., Sloane N.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977).

    MATH  Google Scholar 

  28. Roth R., Lempel A.: A construction of non-Reed-Solomon type MDS codes. IEEE Trans. Inf. Theory 35(3), 655–657 (1989).

    Article  MathSciNet  Google Scholar 

  29. Shi M., Qian L., Sole P.: On self-dual negacirculant codes of index two and four. Des. Codes Cryptogr. 86(11), 2485–2494 (2018).

    Article  MathSciNet  Google Scholar 

  30. Shi M., Sok L., Sole P.: Self-dual codes and orthogonal matrices over large finite fields. Finite Fields Appl. 54, 297–314 (2018).

    Article  MathSciNet  Google Scholar 

  31. Wu Y., Hyun J., Lee Y.: New LCD MDS codes of non-Reed-Solomon type. IEEE Trans. Inf. Theory 67(8), 5069–5078 (2021).

    Article  MathSciNet  Google Scholar 

  32. Yan H.: A note on the constructions of MDS self-dual codes. Cryptogr. Commun. 11(2), 259–268 (2019).

    Article  MathSciNet  Google Scholar 

  33. Zhang A., Feng K.: A unified approach to construct MDS self-dual codes via Reed-Solomon codes. IEEE Trans. Inf. Theory 66(6), 3650–3656 (2020).

    Article  MathSciNet  Google Scholar 

  34. Zhu C., Liao Q.: Self-dual twisted generalized Reed-Solomon codes (2021). arXiv:2111.11901v1.

Download references

Acknowledgements

The authors are grateful to the Associate Editor Shamima Rajesh and the anonymous reviewers for their detailed comments and suggestions that much improved the presentation and quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Additional information

Communicated by J. Jedwab.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Jun Zhang was supported by the National Natural Science Foundation of China under the Grant 11971321 and the National Key Research and Development Program of China under Grants 2018YFA0704703. The research of Zhengchun Zhou was supported by the National Natural Science Foundation of China under Grant 62071397 The research of Chunming Tang was supported by the National Natural Science Foundation of China under the Grant 11871058.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhou, Z. & Tang, C. A class of twisted generalized Reed–Solomon codes. Des. Codes Cryptogr. 90, 1649–1658 (2022). https://doi.org/10.1007/s10623-022-01064-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01064-w

Keywords

Mathematics Subject Classification

Navigation