Skip to main content
Log in

Switching for 2-designs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we introduce a switching for 2-designs, which defines a type of trade. We illustrate this method by applying it to some symmetric (64, 28, 12) designs, showing that the switching introduced in this paper in some cases can be applied directly to orbit matrices. In that way we obtain six new symmetric (64, 28, 12) designs. Further, we show that this type of switching (of trades) can be applied to any symmetric design related to a Bush-type Hadamard matrix and construct symmetric designs with parameters (36, 15, 6) leading to new Bush-type Hadamard matrices of order 36, and symmetric (100, 45, 20) designs yielding Bush-type Hadamard matrices of order 100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abiad A., Butler S., Haemers W.H.: Graph switching, 2-ranks, and graphical Hadamard matrices. Discret. Math. 342, 2850–2855 (2019).

    Article  MathSciNet  Google Scholar 

  2. Behbahani M., Lam C., Östergård P.R.J.: On triple systems and strongly regular graphs. J. Comb. Theory Ser. A 119, 1414–1426 (2012).

    Article  MathSciNet  Google Scholar 

  3. Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn Cambridge University Press, Cambridge (1999).

    Book  Google Scholar 

  4. Billington E.J.: Combinatorial trades: a survey of recent results. In: Wallis W.D. (ed.) Designs 2002: Further Computational and Constructive Design Theory, pp. 47–67. Kluwer, Boston (2003).

    Chapter  Google Scholar 

  5. Bosma W., Cannon J.: Handbook of Magma Functions, Department of Mathematics, University of Sydney (1994). http://magma.maths.usyd.edu.au/magma.

  6. Crnković D.: A series of Menon designs and 1-rotational designs. Finite Fields Appl. 13, 1001–1005 (2007).

    Article  MathSciNet  Google Scholar 

  7. Crnković D., Held D.: Some new Bush-type Hadamard matrices of order 100 and infinite classes of symmetric designs. J. Comb. Math. Comb. Comput. 47, 155–164 (2003).

    MathSciNet  MATH  Google Scholar 

  8. Crnković D., Pavčević M.-O.: Some new symmetric designs with parameters (64,28,12). Discret. Math. 237, 109–118 (2001).

    Article  MathSciNet  Google Scholar 

  9. Dillon J.F.: A survey of difference sets in 2-groups. In: Proceedings of the Marshall Hall Memorial Conference, Burlington (1990).

  10. Ding Y., Houghten S., Lam C., Smith S., Thiel L., Tonchev V.D.: Quasi-symmetric 2-(28,12,11) designs with an automorphism of order 7. J. Comb. Des. 6, 213–223 (1998).

    Article  MathSciNet  Google Scholar 

  11. Denniston R.H.F.: Enumeration of symmetric designs (25,9,3). In: Algebraic and Geometric Combinatorics. North-Holland Mathematics Studies, vol. 65, pp. 111–127. North-Holland, Amsterdam (1982).

  12. Gibbons P.B.: Computing techniques for the construction and analysis of block designs, Techn. Rept. # 92, Department of Computer Science, University of Toronto, vol. 92 (1976).

  13. Grannell M.J., Griggs T.S.: Pasch configuration. In: Hazewinkel M. (ed.) Encyclopaedia of Mathematic, Supplement III, pp. 299–300. Kluwer Academic Publishers, Amsterdam (2001).

    Google Scholar 

  14. Godsil C.D., McKay B.D.: Constructing cospectral graphs. Aequationes Math. 25, 257–268 (1982).

    Article  MathSciNet  Google Scholar 

  15. Hamada N.: On the \(p\)-rank of the incidence matrix of a balanced or partially balanced incomplete block design and it applications to error correcting codes. Hiroshima Math. J. 3, 153–226 (1973).

    Article  MathSciNet  Google Scholar 

  16. Hedayat A.S., Khosrovshahi G.B.: Trades. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 644–648. Chapman & Hall, CRC, Boca Raton (2007).

    Google Scholar 

  17. Janko Z.: The existence of a Bush-type Hadamard matrix of order 36 and two new infinite classes of symmetric designs. J. Comb. Theory Ser. A 95, 360–364 (2001).

    Article  MathSciNet  Google Scholar 

  18. Janko Z., Kharaghani H.: A block negacyclic Bush-type Hadamard matrix and two strongly regular graphs. J. Comb. Theory Ser. A 98, 118–126 (2002).

    Article  MathSciNet  Google Scholar 

  19. Janko Z., Kharaghani H., Tonchev V.D.: Bush-type Hadamard matrices and symmetric designs. J. Comb. Des. 9, 72–78 (2001).

    Article  MathSciNet  Google Scholar 

  20. Janko Z., Kharaghani H., Tonchev V.D.: The existence of a Bush-type Hadamard matrix of order 324 and two new infinite classes of symmetric designs. Des. Codes Cryptogr. 24, 225–232 (2001).

    Article  MathSciNet  Google Scholar 

  21. Jungnickel D., Tonchev V.D.: Exponential number of quasi-symmetric SDP designs and codes meeting the Grey-Rankin bound. Des. Codes Cryptogr. 1, 247–253 (1991).

    Article  MathSciNet  Google Scholar 

  22. Kharaghani H.: On the twin designs with the Ionin-type parameters. Electron. J. Comb. 7, R1 (2000).

    MathSciNet  MATH  Google Scholar 

  23. Kraemer R.G.: Proof of a conjecture on Hadamard 2-groups. J. Comb. Theory Ser. A 63, 1–10 (1994).

    Article  MathSciNet  Google Scholar 

  24. Lam C., Thiel L., Tonchev V.D.: On Quasi-symmetric 2-(28,12,11) and 2-(36,16,12) designs. Des. Codes Cryptogr. 5, 43–55 (1995).

    Article  MathSciNet  Google Scholar 

  25. Muzychuk M., Xiang Q.: Bush-type Hadamard matrices of order \(4m^4\) exist for all odd \(m\). Proc. Am. Math. Soc. 134, 2197–2204 (2006).

    Article  Google Scholar 

  26. Norton H.W.: The \(7 \times 7\) squares. Ann. Eugenics 9, 269–307 (1939).

    Article  MathSciNet  Google Scholar 

  27. Orrick W.P.: Switching operations for Hadamard matrices. SIAM J. Discret. Math. 22, 31–50 (2008).

    Article  MathSciNet  Google Scholar 

  28. Östergård P.R.J.: Switching codes and designs. Discret. Math. 312, 621–632 (2012).

    Article  MathSciNet  Google Scholar 

  29. Parker E.T.:Computer investigation of orthogonal Latin squares of order ten. In: Proceedings of the Symposium Applied Mathematics, vol. XV, pp. 73–81. American Mathematical Society, Providence (1963).

  30. Parker C., Spence E., Tonchev V.D.: Designs with the symmetric difference property on 64 points and their groups. J. Comb. Theory Ser. A 67, 23–43 (1994).

    Article  MathSciNet  Google Scholar 

  31. Seidel J.J.: Graphs and two-graphs. In: Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic University, Boca Raton, FL, 1974), Congressus Numerantium X, Utilitas Math., Winnipeg, Man., pp. 125–143 (1974).

  32. Wallis W.D., Street A.P., Wallis J.S.: Combinatorics: Room Squares. Hadamard Matrices. Sum-Free Sets. Springer, Berlin (1972).

  33. Wanless I.M.: Cycle switches in Latin squares. Graphs Comb. 20, 545–570 (2004).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for helpful comments that improved the presentation of the paper.

Funding

This work has been fully supported by Croatian Science Foundation under the projects 6732 and 5713.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Švob.

Additional information

Communicated by V. D. Tonchev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crnković, D., Švob, A. Switching for 2-designs. Des. Codes Cryptogr. 90, 1585–1593 (2022). https://doi.org/10.1007/s10623-022-01059-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01059-7

Keywords

Mathematics Subject Classification

Navigation