Skip to main content
Log in

Classification of permutation polynomials of the form \(x^3g(x^{q-1})\) of \({\mathbb F}_{q^2}\) where \(g(x)=x^3+bx+c\) and \(b,c \in {\mathbb F}_q^*\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We classify all permutation polynomials of the form \(x^3g(x^{q-1})\) of \({\mathbb F}_{q^2}\) where \(g(x)=x^3+bx+c\) and \(b,c \in {\mathbb F}_q^*\). Moreover we find new examples of permutation polynomials and we correct some contradictory statements in the recent literature. We assume that \(\gcd (3,q-1)=1\) and we use a well known criterion due to Wan and Lidl, Park and Lee, Akbary and Wang, Wang, and Zieve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbary A., Wang Q.: On polynomials of the form \(x^rf(x^{(q-1)/l})\), Int. J. Math. Math. Sci. 7 (2007).

  2. Aubry Y., McGuire G., Rodier F.: A few more functions that are not APN infinitely often. In: Finite Fields: Theory and Applications, Contemp. Math., vol. 518, pp. 23–31. Amer. Math. Soc., Providence (2010).

  3. Bartoli D., Quoos L.: Permutation polynomials of the type \(x^rg(x^s)\) over \({\mathbb{F}}_{q^{2n}}\). Des. Codes Cryptogr. 86, 1589–1599 (2018).

    Article  MathSciNet  Google Scholar 

  4. Bartoli D.: On a conjecture about a class of permutation trinomials. Finite Fields Appl. 52, 30–50 (2018).

    Article  MathSciNet  Google Scholar 

  5. Bartoli D., Giulietti M.: Permutation polynomials, fractional polynomials, and algebraic curves. Finite Fields Appl. 51, 1–16 (2018).

    Article  MathSciNet  Google Scholar 

  6. Bartoli D., Timpanella M.: A family of permutation trinomials over \({\mathbb{F}}_{q^2}\). Finite Fields Appl. 70, 101781 (2021).

    Article  Google Scholar 

  7. Bartoli D., Zhou Y.: Exceptional scattered polynomials. J. Algebra 509, 507–534 (2018).

    Article  MathSciNet  Google Scholar 

  8. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 1179–1260 (1997).

    MathSciNet  MATH  Google Scholar 

  9. Caullery F., Schmidt K.-U.: On the classification of hyperovals. Adv. Math. 283, 195–203 (2015).

    Article  MathSciNet  Google Scholar 

  10. Caullery F., Schmidt K.-U., Zhou Y.: Exceptional planar polynomials. Des. Codes Cryptogr. 78(3), 605–613 (2016).

    Article  MathSciNet  Google Scholar 

  11. Dickson L.E.: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Ann. Math. 11, 65–120 (1896).

    Article  MathSciNet  Google Scholar 

  12. Gupta R., Sharma R.K.: Some new classes of permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 41, 89–96 (2016).

    Article  MathSciNet  Google Scholar 

  13. Hermite C.: Sur les fonctions de sept lettres. C.R. Acad. Sci. Paris 57, 750–757 (1863).

    Google Scholar 

  14. Hernando F., McGuire G.: Proof of a conjecture of Segre and Bartocci on monomial hyperovals in projective planes. Des. Codes Cryptogr. 65(3), 275–289 (2012).

    Article  MathSciNet  Google Scholar 

  15. Hou X.: Permutation polynomials over finite fields—a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015).

    Article  MathSciNet  Google Scholar 

  16. Hou X.: Determination of a type of permutation trinomials over finite fields. Finite Fields Appl. 35, 16–35 (2015).

    Article  MathSciNet  Google Scholar 

  17. Hou X.: A survey of permutation binomials and trinomials over finite fields. (English summary) Topics in finite fields, Contemp. Math., vol. 632, pp. 177–191. Amer. Math. Soc., Providence (2015).

  18. Hou X.: Lectures on Finite Fields, Graduate Studies in Mathematics, vol. 190. American Mathematical Society, Providence (2018).

    Book  Google Scholar 

  19. Hou X.: On the Tu-Zeng permutation trinomial of type \((1/4,3/4)\). Discret. Math. 344(3), 112241 (2021).

    Article  MathSciNet  Google Scholar 

  20. Hou X., Tu Z., Zeng X.: Determination of a class of permutation trinomials in characteristic three. Finite Fields Appl. 61, 1–27 (2020).

    Article  MathSciNet  Google Scholar 

  21. Janwa H., Wilson R.M.: Hyperplane sections of Fermat varieties in \(P^3\) in char.2 and some applications to cyclic codes, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, San Juan, PR, Lecture Notes in Comput. Sci., vol. 673, pp. 180–194. Springer, Berlin (1993).

  22. Leducq E.: Functions which are PN on infinitely many extensions of \({\mathbb{F}}_p\), \(p\) odd. Des. Codes Cryptogr. 75(2), 281–299 (2015).

    Article  MathSciNet  Google Scholar 

  23. Li N., Helleseth T.: Several classes of permutation trinomials from Niho exponents. Cryptogr. Commun. 9, 693–705 (2017).

    Article  MathSciNet  Google Scholar 

  24. Li K., Qu L., Chen X.: New classes of permutation binomials and permutation trinomials over finite fields. Finite Fields Appl. 43, 69–85 (2017).

    Article  MathSciNet  Google Scholar 

  25. Li K., Qu L., Wang Q.: New constructions of permutation polynomials of the form \(x^rh(x^{q-1})\) over \({\mathbb{F}}_{q^2}\). Des. Codes Cryptogr. 86, 2379–2405 (2018).

    Article  MathSciNet  Google Scholar 

  26. Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1997).

    Google Scholar 

  27. Mullen G.L., Panario D.: Handbook of Finite Fields, Discret Mathematics and its Applications. CRC Press, Boca Raton (2013).

    Book  Google Scholar 

  28. Park Y.H., Lee J.B.: Permutation polynomials and group permutation polynomials. Bull. Austral. Math. Soc. 63, 67–74 (2001).

    Article  MathSciNet  Google Scholar 

  29. Rodier F.: Borne sur le degré des polynômes presque parfaitement non-linéaires, Arithmetic, geometry, cryptography and coding theory, Contemp. Math., vol. 487, pp. 169–181. Amer. Math. Soc., Providence (2009).

  30. Tu Z., Zeng X., Li C., Helleseth T.: A class of new permutation trinomials. Finite Fields Appl. 50, 178–195 (2018).

    Article  MathSciNet  Google Scholar 

  31. Wan D., Lidl R.: Permutation polynomials of the form \(x^rf(x^{(q-1)/d})\) and their group structure. Monatshefte Math. 112, 149–163 (1991).

    Article  MathSciNet  Google Scholar 

  32. Wang Q.: Cyclotomic mapping permutation polynomials over finite fields. In: Sequences, Subsequences, and Consequences, Lecture Notes in Comput. Sci., vol. 4893, pp. 119–128. Springer, Berlin (2007).

  33. Wang Q.: Polynomials over finite fields: an index approach. In: Combinatorics and Finite Fields, Difference Sets, Polynomials, Pseudorandomness and Applications, De Gruyter, pp. 319–348 (2019).

  34. Zieve M.E.: On some permutation polynomials over \({\mathbb{F}}_q\) of the form \(x^rh(x^{(q-1)/d})\). Proc. Am. Math. Soc. 137, 2209–2216 (2009).

    Article  Google Scholar 

  35. Zieve M.E.: Planar functions and perfect nonlinear monomials over finite fields. Des. Codes Cryptogr. 75(1), 71–80 (2015).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their valuable suggestions and comments. Ferruh Özbudak is supported partially by METU Coordinatorship of Scientific Research Projects via Grant GAP-101-2021-10755.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferruh Özbudak.

Additional information

Communicated by D. Panario.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özbudak, F., Gülmez Temür, B. Classification of permutation polynomials of the form \(x^3g(x^{q-1})\) of \({\mathbb F}_{q^2}\) where \(g(x)=x^3+bx+c\) and \(b,c \in {\mathbb F}_q^*\). Des. Codes Cryptogr. 90, 1537–1556 (2022). https://doi.org/10.1007/s10623-022-01052-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01052-0

Keywords

Mathematics Subject Classification

Navigation