Skip to main content
Log in

On the nonexistence of ternary linear codes attaining the Griesmer bound

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

An \([n,k,d]_q\) code is a linear code of length n, dimension k and minimum weight d over the field of order q. It is known that the Griesmer bound is attained for all sufficiently large d for fixed q and k. We deal with the problem to find \(D_{q,k}\), the largest value of d such that the Griesmer bound is not attained for fixed q and k. \(D_{q,k}\) is already known for the cases \(q \ge k\) with \(k=3,4,5\) and \(q \ge 2k-3\) with \(k \ge 6\), but not known for the case \(q<k\) except for some small q and k. We show that our conjecture on \(D_{3,k}\) is valid for \(k \le 9\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belov B.I., Logachev V.N., Sandimirov V.P.: Construction of a class of linear binary codes achieving the Varshamov-Griesmer bound. Probl. Inf. Transm. 10(3), 211–217 (1974).

    Google Scholar 

  2. Bouyukliev I.G.: What is Q-extension? Serdica J. Comput. 1, 115–130 (2007).

    MathSciNet  MATH  Google Scholar 

  3. Bouyukliev I., Bouyuklieva S., Kurz S.: Computer classification of linear codes. IEEE Trans. Inf. Theory, in press.

  4. Bouyukliev I., Bouyuklieva S., Kurz S.: Database with linear codes. Zenodo (2020). https://doi.org/10.5281/zenodo.3957236.

    Article  MATH  Google Scholar 

  5. Bouyukliev I., Jaffe D.B., Vavrek V.: The smallest length of eight-dimensional binary linear codes with prescribed minimum distance. IEEE Trans. Inf. Theory 46, 981–985 (2002).

    Article  MathSciNet  Google Scholar 

  6. Brouwer A.E., van Eupen M.: The correspondence between projective codes and 2-weight codes. Des. Codes Cryptogr. 11, 261–266 (1997).

    Article  MathSciNet  Google Scholar 

  7. Cheon E.J.: A class of optimal linear codes of length one above the Griesmer bound. Des. Codes Cryptogr. 51, 9–20 (2009).

    Article  MathSciNet  Google Scholar 

  8. Dodunekov S.M.: Optimal linear codes, Doctor Thesis, Sofia (1985).

  9. Griesmer J.H.: A bound for error-correcting codes. IBM J. Res. Dev. 4, 532–542 (1960).

    Article  MathSciNet  Google Scholar 

  10. Hill R.: Optimal linear codes. In: Mitchell, C. (ed.) Cryptography and Coding II, pp. 75–104. Oxford University Press, Oxford (1992).

  11. Hill R., Kolev E.: A survey of recent results on optimal linear codes. In: Holroyd, F.C., Quinn, K.A.S., Rowley, C., Webb, B.S. (eds.) Combinatorial Designs and their Applications. Chapman and Hall/CRC Press Research Notes in Mathematics, pp. 127–152, CRC Press. Boca Raton (1999).

  12. Inoue Y., Maruta T.: Construction of new Griesmer codes of dimension 5. Finite Fields Appl. 55, 231–237 (2019).

    Article  MathSciNet  Google Scholar 

  13. Kageyama Y., Maruta T.: On the geometric constructions of optimal linear codes. Des. Codes Cryptogr. 81, 469–480 (2016).

    Article  MathSciNet  Google Scholar 

  14. Kawabata D., Maruta T.: A Conjecture on optimal ternary linear codes. In: Proceedings of 17th International Workshop on Algebraic and Combinatorial Coding Theory, 2020 Algebraic and Combinatorial Coding Theory (ACCT), pp. 90–94, IEEE Xplore (2021).

  15. Landgev I., Maruta T., Hill R.: On the nonexistence of quaternary [51, 4, 37] codes. Finite Fields Appl. 2, 96–110 (1996).

    Article  MathSciNet  Google Scholar 

  16. Maruta T.: On the achievement of the Griesmer bound. Des. Codes Cryptogr. 12, 83–87 (1997).

    Article  MathSciNet  Google Scholar 

  17. Maruta T.: On the nonexistence of q-ary linear codes of dimension five. Des. Codes Cryptogr. 22, 165–177 (2001).

    Article  MathSciNet  Google Scholar 

  18. Maruta T.: Griesmer bound for linear codes over finite fields. http://mars39.lomo.jp/opu/griesmer.htm.

  19. Maruta T.: Some 9-divisible ternary linear codes of dimension 7. http://mars39.lomo.jp/opu/div-ternary.htm.

  20. Maruta T., Oya Y.: On the minimum length of ternary linear codes. Des. Codes Cryptogr. 68, 407–425 (2013).

    Article  MathSciNet  Google Scholar 

  21. Takenaka M., Okamoto K., Maruta T.: On optimal non-projective ternary linear codes. Discret. Math. 308, 842–854 (2008).

    Article  MathSciNet  Google Scholar 

  22. van Tilborg H.: The smallest length of binary 7-dimensional linear codes with prescribed minimum distance. Discret. Math. 33, 197–207 (1981).

    Article  MathSciNet  Google Scholar 

  23. Ward H.N.: Divisibility of codes meeting the Griesmer bound. J. Comb. Theory Ser. A 83(1), 79–93 (1998).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their careful reading and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Maruta.

Additional information

Communicated by J.-L. Kim.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by JSPS KAKENHI Grant Number 20K03722.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawabata, D., Maruta, T. On the nonexistence of ternary linear codes attaining the Griesmer bound. Des. Codes Cryptogr. 90, 947–956 (2022). https://doi.org/10.1007/s10623-022-01021-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01021-7

Keywords

Mathematics Subject Classification

Navigation