Skip to main content
Log in

Two secondary constructions of bent functions without initial conditions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this article, we propose two secondary constructions of bent functions without any conditions on initial bent functions employed by these methods. It is shown that both methods generate bent functions that belong to the generalized Maiorana–McFarland (\({\mathcal {GMM}}_{n/2+k}\)) class of n-variable Boolean functions, with n even. The class \({\mathcal {GMM}}_{n/2+k}\) contains functions that can be viewed as a concatenation of \((n/2-k)\)-variable (not necessarily distinct) affine functions, which was previously (mainly) used in the design of resilient Boolean functions. Most notably, we show that a subclass of bent functions generated by our first method is provably outside the completed Maiorana–McFarland class \({\mathcal {MM}}^\#\). This extremely large class of Boolean functions \({\mathcal {GMM}}_{n/2+k}\), which is shown to properly include the standard Maiorana–McFarland class \({\mathcal {MM}}\), may contain a significant subset of bent functions that are not the members of \({\mathcal {MM}}^\#\). In general, the inclusion of these bent functions, that are provably outside \({\mathcal {MM}}^\#\), into the completed partial spread class remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camion P., Carlet C., Charpin P., Sendrier N.: On correlation-immune functions. In: Advances in Cryptology—CRYPTO’91. LNCS, vol. 576, pp. 86–100 (1991).

  2. Canteaut A., Charpin P.: Decomposing bent functions. IEEE Trans. Inf. Theory 49(8), 2004–2019 (2003).

    Article  MathSciNet  Google Scholar 

  3. Carlet C.: Two new classes of bent functions. In: Advances in Cryptology—EUROCRYPT’93. LNCS, vol. 765, pp. 77–101 (1993).

  4. Carlet C.: Partially-bent functions. Des. Codes Cryptogr. 3(2), 135–145 (1993).

    Article  MathSciNet  Google Scholar 

  5. Carlet C.: A construction of bent functions. In: Cohen S., Niederreiter H. (eds.) Finite Fields and Applications, pp. 47–58. Cambridge University Press, London (1996).

    Chapter  Google Scholar 

  6. Carlet C.: On the secondary constructions of resilient and bent functions. In: Coding, Cryptography and Combinatorics 2003, vol. 23, pp. 3–28 (2004).

  7. Carlet C.: On the confusion and diffusion properties of Maiorana-McFarland’s and extended Maiorana-McFarland’s functions. J. Complex. 20(2), 182–204 (2004).

    Article  MathSciNet  Google Scholar 

  8. Carlet C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, London (2021).

    MATH  Google Scholar 

  9. Carlet C., Mesnager S.: Four decades of research on bent functions. Des. Codes Cryptogr. 78(1), 5–50 (2016).

    Article  MathSciNet  Google Scholar 

  10. Carlet C., Yucas J.: Piecewise constructions of bent and almost optimal Boolean functions. Des. Codes Cryptogr. 37(3), 449–464 (2005).

    Article  MathSciNet  Google Scholar 

  11. Carlet C., Zhang F., Hu Y.: Secondary constructions of bent functions and their enforcement. Adv. Math. Commun. 6(3), 305–314 (2012).

    Article  MathSciNet  Google Scholar 

  12. Carlet C., Gao G., Liu W.: A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions. J. Comb. Theory Ser. A 127, 161–175 (2014).

    Article  MathSciNet  Google Scholar 

  13. Dillon J.F.: Elementary Hadamard difference sets. Ph.D. dissertation. University of Maryland, College Park, Md, USA (1974).

  14. Dobbertin H.: Construction of bent functions and balanced Boolean functions with high nonlinearity. In: International Workshop on Fast Software Encryption, FSE 1994, LNCS, vol. 113, pp. 61–74 (1994).

  15. Hodzic S., Pasalic E., Zhang W.: Generic constructions of five-valued spectra Boolean functions. IEEE Trans. Inf. Theory 65(11), 7554–7565 (2019).

    Article  MathSciNet  Google Scholar 

  16. Hodžić S., Pasalic E., Wei Y.: A general framework for secondary constructions of bent and plateaued functions. Des. Codes Cryptogr. 88, 2007–2035 (2020).

    Article  MathSciNet  Google Scholar 

  17. Hou X., Langevin P.: Results on bent functions. J. Comb. Theory Ser. A 80(2), 232–246 (1997).

    Article  MathSciNet  Google Scholar 

  18. Langevin P., Leander G.: Counting all bent functions in dimension eight 99270589265934370305785861242880. Des. Codes Cryptogr. 59, 193–225 (2011).

    Article  MathSciNet  Google Scholar 

  19. Mandal B., Stanica P., Gangopadhyay S., Pasalic E.: An analysis of \(\cal{C}\) class of bent functions. Fund. Inform. 147(3), 271–292 (2016).

    MathSciNet  MATH  Google Scholar 

  20. McFarland R.L.: A family of difference sets in non-cyclic groups. J. Comb. Theory Ser. A 15(1), 1–10 (1973).

    Article  MathSciNet  Google Scholar 

  21. Mesnager S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory 60(7), 4397–4407 (2014).

    Article  MathSciNet  Google Scholar 

  22. Mesnager S.: Further constructions of infinite families of bent functions from new permutations and their duals. Cryptogr. Commun. 8, 229–246 (2016).

    Article  MathSciNet  Google Scholar 

  23. Pasalic E., Zhang F., Kudin S., Wei Y.: Vectorial bent functions weakly/strongly outside the completed Maiorana-McFarland class. Discret. Appl. Math. 294(8), 138–151 (2021).

    Article  MathSciNet  Google Scholar 

  24. Rothaus O.S.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).

  25. Wei Y., Pasalic E., Zhang F., Wu W., Wang C.: New constructions of resilient functions with strictly almost optimal nonlinearity via non-overlap spectra functions. Inf. Sci. 415, 377–396 (2017).

    Article  Google Scholar 

  26. Zhang W.: High-meets-Low: Construction of strictly almost optimal resilient Boolean functions via fragmentary Walsh spectra. IEEE Trans. Inf. Theory 65(9), 5856–5864 (2019).

    Article  MathSciNet  Google Scholar 

  27. Zhang W., Pasalic E.: Generalized Maiorana-McFarland construction of resilient Boolean functions with high nonlinearity and good algebraic properties. IEEE Trans. Inf. Theory 60(10), 6681–6695 (2014).

    Article  MathSciNet  Google Scholar 

  28. Zhang W., Pasalic E.: Constructions of resilient S-boxes with strictly almost optimal nonlinearity through disjoint linear codes. IEEE Trans. Inf. Theory 60(3), 1638–1651 (2014).

    Article  MathSciNet  Google Scholar 

  29. Zhang F., Carlet C., Hu Y., Cao T.: Secondary constructions of highly nonlinear Boolean functions and disjoint spectra plateaued functions. Inf. Sci. 283, 94–106 (2014).

    Article  MathSciNet  Google Scholar 

  30. Zhang F., Wei Y., Pasalic E.: Constructions of bent—negabent functions and their relation to the completed Maiorana—McFarland class. IEEE Trans. Inf. Theory 61(3), 1496–1506 (2015).

    Article  MathSciNet  Google Scholar 

  31. Zhang F., Carlet C., Hu Y., Zhang W.: New secondary constructions of bent functions. Appl. Algebra Eng. Commun. Comput. 27(5), 413–434 (2016).

    Article  MathSciNet  Google Scholar 

  32. Zhang W., Li L., Pasalic E.: Construction of resilient S-boxes with higher-dimensional vectorial outputs and strictly almost optimal non-linearity. IET Inf. Secur. 11(4), 199–203 (2017).

    Article  Google Scholar 

  33. Zhang F., Pasalic E., Wei Y., Cepak N.: Constructing bent functions outside the Maiorana-McFarland class using a general form of Rothaus. IEEE Trans. Inf. Theory 63(8), 5336–5349 (2017).

    Article  MathSciNet  Google Scholar 

  34. Zhang F., Pasalic E., Cepak N., Wei Y.: Bent Functions in \(\cal{C}\) and \(\cal{D}\) Outside the Completed Maiorana-McFarland Class. In: Codes, Cryptology and Information Security, C2SI2017, LNCS, vol. 10194, pp. 298–313 (2017).

  35. Zhang F., Cepak N., Pasalic E., Wei Y.: Further analysis of bent functions from \(\cal{C}\) and \(\cal{D}\) which are provably outside or inside \(\cal{M}^\#\). Discret. Appl. Math. 285, 458–472 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Haixia Zhao and Yongzhuang Wei are supported in part by the Natural Science Foundation of China (61872103, 62162016), in part by the Guangxi Natural Science Foundation(2019GXNSFGA245004). Fengrong Zhang is supported in part by the Natural Science Foundation of China (No. 61972400). Enes Pasalic is supported in part by the Slovenian Research Agency (research program P1-0404 and research projects J1-9108, J1-1694, N1-0159, J1-2451). Nastja Cepak is supported in part by the Slovenian Research Agency (research program P1-0404 and research projects J1-1694 and N1-0159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Wei.

Additional information

Communicated by T. Helleseth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I: The derivation of \(D_aD_bf\) in Lemma 3

$$\begin{aligned} D_a D_bf= & {} \bigoplus \limits _{ \varsigma =1}^{2}h_{\varsigma }(X_{({n}-2k+1)}^{(n)})\left( \bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus 1)\right) \\&\oplus \bigoplus \limits _{\begin{array}{c} \varsigma =1 \end{array}}^{2} h_{\varsigma }(X_{({n}-2k+1)}^{(n)}\oplus (a'_{[3]},a'_{[4]}))\left( \bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus a_i\oplus 1)\right) \\&\oplus \bigoplus \limits _{\begin{array}{c} \varsigma =1 \end{array}}^{2}h_{\varsigma }(X_{({n}-2k+1)}^{(n)}\oplus (b'_{[3]},b'_{[4]}))\left( \bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus b_i\oplus 1)\right) \\&\oplus \bigoplus \limits _{\begin{array}{c} \varsigma =1 \end{array}}^{2} h_{\varsigma }(X_{({n}-2k+1)}^{(n)}\oplus (a'_{[3]},a'_{[4]})\\&\oplus (b'_{[3]},b'_{[4]}))\left( \bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus a_i\oplus b_i\oplus 1)\right) \\&\oplus D_{(a_{[1]},a_{[2]})}D_{(b_{[1]},b_{[2]})}g(X^{(n-2k)})\\= & {} \bigoplus \limits _{ \varsigma =1}^{2}h_{\varsigma }(X_{({n}-2k+1)}^{(n)})\left( \bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus 1)\right) \\&\oplus \bigoplus \limits _{\begin{array}{c} \varsigma =1 \end{array}}^{2} h_{\varsigma }(X_{({n}-2k+1)}^{(n)}\oplus (a'_{[3]},a'_{[4]}))\left( \bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i \oplus 1)\right) \\&\oplus \bigoplus \limits _{\begin{array}{c} \varsigma =1 \end{array}}^{2} h_{\varsigma }(X_{({n}-2k+1)}^{(n)}\oplus (a'_{[3]},a'_{[4]}))\left( D_{a_{[1]}} \bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus 1)\right) \\&\oplus \bigoplus \limits _{\begin{array}{c} \varsigma =1 \end{array}}^{2} h_{\varsigma }(X_{({n}-2k+1)}^{(n)}\oplus (b'_{[3]},b'_{[4]}))\left( \bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i \oplus 1)\right) \\&\oplus \bigoplus \limits _{\begin{array}{c} \varsigma =1 \end{array}}^{2} h_{\varsigma }(X_{({n}-2k+1)}^{(n)}\oplus (b'_{[3]},b'_{[4]})) \left( D_{b_{[1]}}\bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus 1)\right) \\&\oplus \bigoplus \limits _{\begin{array}{c} \varsigma =1 \end{array}}^{2} h_{\varsigma }(X_{({n}-2k+1)}^{(n)}\oplus (a'_{[3]},a'_{[4]})\\&\oplus (b'_{[3]},b'_{[4]}))\left( \bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i \oplus 1)\right) \end{aligned}$$
$$\begin{aligned}&\oplus \bigoplus \limits _{\begin{array}{c} \varsigma =1 \end{array}}^{2}h_{\varsigma }(X_{({n}-2k+1)}^{(n)}\oplus (a'_{[3]},a'_{[4]})\\&\oplus (b'_{[3]},b'_{[4]})) \left( D_{a_{[1]}\oplus b_{[1]}}\bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus 1)\right) \\&\oplus D_{(a_{[1]},a_{[2]})}D_{(b_{[1]},b_{[2]})}g(X^{(n-2k)})\\= & {} \bigoplus \limits _{ \varsigma =1}^{2}D_{(a'_{[3]},a'_{[4]})}D_{(b'_{[3]},b'_{[4]})}h_{\varsigma }(X_{({n}-2k+1)}^{(n)})\left( \bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus 1)\right) \\&\oplus \bigoplus \limits _{\begin{array}{c} \varsigma =1 \end{array}}^{2} h_{\varsigma }(X_{({n}-2k+1)}^{(n)}\oplus (a'_{[3]},a'_{[4]}))\left( D_{a_{[1]}} \bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus 1)\right) \\&\oplus \bigoplus \limits _{\begin{array}{c} \varsigma =1 \end{array}}^{2} h_{\varsigma }(X_{({n}-2k+1)}^{(n)}\oplus (b'_{[3]},b'_{[4]})) \left( D_{b_{[1]}}\bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus 1)\right) \\&\oplus \bigoplus \limits _{\begin{array}{c} \varsigma =1 \end{array}}^{2}h_{\varsigma }(X_{({n}-2k+1)}^{(n)}\oplus (a'_{[3]},a'_{[4]})\\&\oplus (b'_{[3]},b'_{[4]})) \left( D_{a_{[1]}\oplus b_{[1]}}\bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus 1)\right) \\&\oplus D_{(a_{[1]},a_{[2]})}D_{(b_{[1]},b_{[2]})}g(X^{(n-2k)}). \end{aligned}$$

II. Theorem 4: Proof for the remaining cases when \(|V\cap \Delta |>1\).

(B2) Case \(||V\cap \Delta ||= 2\): In this case there exists one vector \((0_{\frac{n}{2}-k},a_{[2]}, a_{[3]}, 0_{k})\in V\) such that \((a_{[2]}, a_{[3]})\ne 0_{ \frac{n}{2}}\). We have \(||\{(v_1^{(1)},v_4^{(1)}),\ldots , (v_1^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})})\}||\ge 2^{n/2-1}\) (counting distinct vectors). Assuming, on contrary, that \(||\{(v_1^{(1)},v_4^{(1)}),\dots , (v_1^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})})\}||< 2^{n/2-1}\) would imply the existence of (at least) 4 vectors

$$\begin{aligned} (v_1^{(i_1)},v_4^{(i_1)}), (v_1^{(i_2)},v_4^{(i_2)}), (v_1^{(i_3)},v_4^{(i_3)}),(v_1^{(i_4)},v_4^{(i_4)}) \in \{(v_1^{(1)},v_4^{(1)}),\dots , (v_1^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})})\} \end{aligned}$$

such that \((v_1^{(i_1)},v_4^{(i_1)})= (v_1^{(i_2)},v_4^{(i_2)})=(v_1^{(i_3)},v_4^{(i_3)})=(v_1^{(i_4)},v_4^{(i_4)}) \) (since V is a subspace). This contradicts the fact that \(||V\cap \Delta ||= 2\), since the addition of above vectors gives at least 3 vectors of the form \((0_{\frac{n}{2}-k},*,*,0_{k}) \in V \cap \Delta \). Note that

$$\begin{aligned}&\dim (\{v_1^{(1)},\ldots , v_1^{(2^{\frac{n}{2}})} \}) + \dim (\{v_4^{(1)},\ldots , v_4^{(2^{\frac{n}{2}})} \}) \\&\quad \ge \dim (\{(v_1^{(1)},v_4^{(1)}),\ldots , (v_1^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})}) \}) \ge \frac{n}{2}-1, \end{aligned}$$

so we either have \(\{v_1^{(1)},\dots ,\) \( v_1^{(2^{\frac{n}{2}})}\}= {\mathbb {F}}_2^{n/2-k} \) or alternatively \(\{v_4^{(1)},\dots , v_4^{(2^{\frac{n}{2}})}\}= {\mathbb {F}}_2^{k} \) (up to repetition of some \(v_1^{(i)}\) and \(v_4^{(j)}\)). We consider these two cases separately.

(B2) i) Case \(\{v_1^{(1)},\dots ,\) \( v_1^{(2^{\frac{n}{2}})}\}= {\mathbb {F}}_2^{n/2-k} \): Since \(||\{(v_1^{(1)},v_4^{(1)}),\ldots , (v_1^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})})\}||\ge 2^{n/2-1}\), we have \(||\{v_4^{(1)},\ldots , v_4^{(2^{\frac{n}{2}})}\}||\ge 2^{k-1}\). There are two subcases to be considered now.

  1. (1)

    When \(\dim (\{(v_3^{(1)},v_4^{(1)}),\ldots , (v_3^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})}) \})=k\), from item (B1), we have \( D_aD_bf\ne 0\).

  2. (2)

    When \(\dim (\{(v_3^{(1)},v_4^{(1)}),\ldots , (v_3^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})}) \})=k-1\), we also know \(\dim (\{v_4^{(1)},\ldots ,\) \( v_4^{(2^{\frac{n}{2}})} \})=k-1\) since \(||\{(v_1^{(1)},v_4^{(1)}), \ldots , (v_1^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})})\}||\ge 2^{n/2-1}\). This can be confirmed using the fact that

    $$\begin{aligned} \{(v_1^{(1)},v_3^{(1)},v_4^{(1)}),\ldots , (v_1^{(2^{\frac{n}{2}})},v_3^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})})\}=2^{n/2-k}\times 2^{k-1} \end{aligned}$$

    and because V is a subspace then

    $$\begin{aligned} 2^{n/2-k}\times 2^{k-1}\ge & {} \Vert \{(v_1^{(1)},v_3^{(1)},v_4^{(1)}),\ldots , (v_1^{(2^{\frac{n}{2}})},v_3^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})})\}\Vert \\\ge & {} \Vert \{(v_1^{(1)},v_4^{(1)}),\ldots , (v_1^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})})\}\Vert \\\ge & {} 2^{n/2-1}. \end{aligned}$$

    Further, \( {\mathbb {F}}_2^{n/2-k} \times 0_{2k}\subseteq \{(v_1^{(1)},v_3^{(1)},v_4^{(1)}),\ldots ,\) \( (v_1^{(2^{\frac{n}{2}})}, v_3^{(2^{\frac{n}{2}})},v_4^{(2^{\frac{n}{2}})})\}\), since \(\{v_1^{(1)},\dots ,\) \( v_1^{(2^{\frac{n}{2}})}\}= {\mathbb {F}}_2^{n/2-k} \) and \(\{(v_1^{(1)},v_3^{(1)},v_4^{(1)}),\ldots ,\) \( (v_1^{(2^{\frac{n}{2}})}, v_3^{(2^{\frac{n}{2}})},v_4^{(2^{\frac{n}{2}})})\}\) is a subspace of \({{\mathbb {F}}}_2^{n/2+k}\). Now, since \(\Vert \Phi ^{-1}(H_{1})\Vert \) is odd, there must exist the term \(x_1x_2\cdots x_{\frac{n}{2}-k}h_{1}(X_{({n}-2k+1)}^{(n)})\) in the ANF of f. We also know that there must exist two vectors \(a=(a_{[1]}, a_{[2]}, 0_{2k}),b=(b_{[1]}, b_{[2]}, 0_{2k})\in V\) such that \(a_{[1]}\ne b_{[1]}\), \(a_{[1]}\ne 0_{n/2-k} \) and \(b_{[1]}\ne 0_{n/2-k}\) since \(\{v_1^{(1)},\dots ,\) \( v_1^{(2^{\frac{n}{2}})}\}= {\mathbb {F}}_2^{n/2-k} \). Hence, the term \((h_{1}\oplus h_2)(X_{({n}-2k+1)}^{(n)})\) must be included in the ANF of

    $$\begin{aligned} D_{a_{[1]}}D_{b_{[1]}} \bigoplus \limits _{\varsigma =1}^{2}\bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{2}) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus 1)h_{\varsigma }(X_{({n}-2k+1)}^{(n)}). \end{aligned}$$

    Thus,

    $$\begin{aligned} \begin{aligned} D_aD_bf=&D_{a_{[1]}}D_{b_{[1]}}\bigoplus \limits _{\varsigma =1}^{2}\bigoplus \limits _{\alpha ^{(\frac{n}{2}-k) }\in \Phi ^{-1}(H_{\varsigma }) }\prod \limits _{i=1}^{\frac{n}{2}-k}(x_i\oplus \alpha _i\oplus 1)h_{\varsigma }(X_{({n}-2k+1)}^{(n)})\\&\oplus D_{(a_{[1]},a_{[2]})}D_{(b_{[1]},b_{[2]})}g(X^{({n}-2k)}) \ne 0\end{aligned}. \end{aligned}$$

(B2) ii) Case \(\{v_4^{(1)},\ldots , v_4^{(2^{\frac{n}{2}})}\}= {\mathbb {F}}_2^{k} \): From item (B1), we directly get \( D_aD_bf\ne 0\).

(B3) Case \(\Vert V\cap \Delta \Vert > 2\): This implies that \(\Vert V\cap \Delta \Vert \ge 4\) and we consider two cases:

$$\begin{aligned} i) \; \dim (\{(v_3^{(1)},v_4^{(1)}), \ldots , (v_3^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})}) \}) \ge k, \end{aligned}$$

and

$$\begin{aligned} ii) \;\dim (\{(v_3^{(1)},v_4^{(1)}),\ldots , (v_3^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})}) \})<k. \end{aligned}$$

The case (B3) i) is easily dealt with, since again using (B1) we get \( D_aD_bf\ne 0\).

For the case (B3) ii) we have that \(\dim (\{(v_1^{(1)},v_2^{(1)}),\ldots , (v_1^{(2^{\frac{n}{2}})}, v_2^{(2^{\frac{n}{2}})}) \})> n/2-k\) since

$$\begin{aligned} \dim \{(v_1^{(1)},v_2^{(1)}),\ldots , (v_1^{(2^{\frac{n}{2}})}, v_2^{(2^{\frac{n}{2}})}) \}+\dim \{(v_3^{(1)},v_4^{(1)}),\ldots , (v_3^{(2^{\frac{n}{2}})}, v_4^{(2^{\frac{n}{2}})})\}\ge \dim (V)=\frac{n}{2}. \end{aligned}$$

Further, since V is a subspace and \(\Vert V\Vert =2^{n/2}\), we have

$$\begin{aligned} \Vert S\Vert =\Vert \{(v_1,v_2, 0_{2k}): (v_1,v_2, 0_{2k})\in V \} \Vert >2^{n/2-k}, \end{aligned}$$

for a linear subspace \(S \subset {{\mathbb {F}}}_2^n\) because \(\dim (\{(v_1^{(1)},v_2^{(1)}),\) \(\ldots , (v_1^{(2^{\frac{n}{2}})}, v_2^{(2^{\frac{n}{2}})}) \})> n/2-k\).

Assume now that for any \(v_1,v_2 \) such that \((v_1,v_2, 0_{2k})\in V\), we have that \(v_2\ne 0_{n/2-k} \) implies that \(v_1\ne 0_{n/2-k} \). This would contradict the fact that \(\Vert S\Vert >2^{n/2-k}\). To see this, without loss of generality, we set \(\{ v_1^{i_1},\ldots , v_1^{i_\mu }\}=\{ v_1: (v_1,v_2, 0_{2k})\in S\}\). Since S is a subspace, we must have \(0_{n/2-k}\in \{ v_1^{i_1},\ldots , v_1^{i_\mu }\}\). We also know \( i_\mu \le 2^{n/2-k}<\Vert S\Vert \). Hence, there must exist \((0_{n/2-k}, v_2^{i_\rho },0_{2k})\in V\). Therefore, there must exist one non-zero vector \(a \in V\) of the form \(a=(0_{n/2-k},a_{[2]}, 0_{2k})\in V\). Then, taking some \(b=(b_{[1]},b_{[2]}, 0_{2k})\in V\) we obtain

$$\begin{aligned} \begin{aligned} D_{a}D_bf =&D_{(0_{\frac{n}{2}-k},a_{ [2]})} D_{(b_{[1]},b_{[2]})}g(X^{(n-2k)})\\ =&D_{(b_{[1]},b_{[2]})}(\Phi (X^{(n/2-k)} )\cdot a_{ [2]} )\\ =&D_{b_{[1]}}(\Phi (X^{(n/2-k)} )\cdot a_{ [2]} )\ne 0, \end{aligned} \end{aligned}$$

since \(\Phi \cdot \nu \) has no nonzero linear structure for any \(\nu \in {{\mathbb {F}}}_2^n\setminus \{\mathbf{0 }_{n/2-k}\}\). Combining the cases (A) and (B), we deduce that f does not belong to \({\mathcal {MM}}^{\#}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Wei, Y., Zhang, F. et al. Two secondary constructions of bent functions without initial conditions. Des. Codes Cryptogr. 90, 653–679 (2022). https://doi.org/10.1007/s10623-021-00996-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00996-z

Keywords

Mathematics Subject Classification

Navigation