Skip to main content
Log in

The neighbor graph of binary self-dual codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We study the neighbor graph \(\Gamma _n\) of binary self-dual codes, where two codes are connected by an edge if and only if they share a subcode of co-dimension 1. We show it is a connected, regular graph with \(\prod _{i=1}^{\frac{n}{2} -1} (2^i+1)\) vertices, \(\left( \prod _{i=1}^{\frac{n}{2}-1} (2^i+1) \right) (2^{\frac{n}{2} -1} -1)\) edges, and degree \(2^{\frac{n}{2}} -2.\) We prove that the number of distance k-neighbors in the graph \(\Gamma _n\) is \( \frac{\prod _{j=0}^{k-1} (2^{n-1-j} - 2^{\frac{n}{2}} )}{\prod _{h=0}^{k-1} (2^{\frac{n}{2}} -2^{\frac{n}{2}-1-h} ) } \). For \(n \equiv 0 \pmod {8}\), we define the neighbor graph \(\Delta _n\) of Type II codes, which is a subgraph of \(\Gamma _n\). We show it is a connected, regular graph with \(2 \prod _{i=1}^{\frac{n}{2} -2} (2^i+1)\) vertices, \(\left( \prod _{i=1}^{\frac{n}{2} -2} (2^i+1)\right) (2^{\frac{n}{2} -1} -1)\) edges, and degree \((2^{\frac{n}{2} -1} -1)\). We prove that the number of distance k-neighbors in the graph \(\Delta _n\) is \( \frac{\prod _{j=0}^{k-1} (2^{n-2-j} - 2^{\frac{n-2}{2}} )}{\prod _{h=0}^{k-1} (2^{\frac{n}{2}} -2^{\frac{n}{2}-1-h} ) } \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assmus E.F. Jr., Key J.D.: Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge (1992).

    Book  Google Scholar 

  2. Conway J.H., Sloane N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inform. Theory 36(6), 1319–1333 (1990).

    Article  MathSciNet  Google Scholar 

  3. Conway J.H., Sloane N.J.A.: Sphere packings, lattices, and groups, Third edition. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290. Springer-Verlag, New York (1999).

  4. Dougherty S.T.: Algebraic Coding Theory Over Finite Commutative Rings. SpringerBriefs in Mathematics. Springer, Cham (2017).

    Book  Google Scholar 

  5. Dougherty S.T., Gulliver T.A., Harada M.: Extremal binary self-dual codes. IEEE Trans. Inform. Theory 43(6), 2036–2047 (1997).

    Article  MathSciNet  Google Scholar 

  6. Dougherty S.T., Kim J.L., Solé P.: Open Problems in Coding Theory, Noncommutative Rings and Their Applications. Contemporary Mathematics, vol. 634, pp. 79–99. American Mathematical Society, Providence (2015).

    MATH  Google Scholar 

  7. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  8. Lam C.W.H.: The search for a finite projective plane of order 10. Am. Math. Mon. 98(4), 305–318 (1991).

    Article  MathSciNet  Google Scholar 

  9. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, vol. 16. North-Holland Publishing Co., Amsterdam (1977).

    Google Scholar 

  10. Nebe G., Rains E.M., Sloane N.J.A.: Self-Dual Codes and Invariant Theory, Algorithms and Computation in Mathematics, 17. Springer, Berlin (2006).

    MATH  Google Scholar 

  11. Rains E.M., Sloane N.J.A.: In: Vol I., II, (eds.) Self-dual codes, Handbook of coding theory, pp. 177–294. North-Holland, Amsterdam (1998).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Y. Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dougherty, S.T. The neighbor graph of binary self-dual codes. Des. Codes Cryptogr. 90, 409–425 (2022). https://doi.org/10.1007/s10623-021-00985-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00985-2

Keywords

Mathematics Subject Classification

Navigation