Skip to main content
Log in

Quantum codes from \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \)-cyclic codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A new class of binary quantum codes from cyclic codes over \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \), \(u^4=0\), is introduced. The generator polynomials of \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \)-cyclic codes of length (rs) are obtained through the factorization of \(x^r-1\) and \(x^s-1\) into pairwise coprime monic polynomials over \(\mathbb {Z}_2\), where r and s are odd positive integers. A minimal spanning set for these codes is obtained. Under some restricted conditions, the structure of the duals of \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4\rangle \)-cyclic codes is also determined. Necessary and sufficient conditions for a \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \)-cyclic code of this restricted class to contain its dual or to be self-orthogonal are obtained. A new Gray map is defined, and the binary quantum codes are obtained by using the Calderbank-Shor-Steane construction on self-orthogonal or dual containing \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \)-cyclic codes. Some examples of binary quantum codes with good parameters constructed from \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \)-cyclic codes are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abualrub T., Siap I.: Cyclic codes over the rings \(\mathbb{Z}_2+u\mathbb{Z}_2\) and \(\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2\). Des. Codes Cryptogr. 42(3), 273–287 (2007).

    Article  MathSciNet  Google Scholar 

  2. Aydogdu I., Siap I.: The structure of \(\mathbb{Z}_2\mathbb{Z}_{2^s}\)-additive codes: bounds on the minimum distance. Appl. Math. Inf. Sci. 7(6), 2271–2278 (2013).

    Article  MathSciNet  Google Scholar 

  3. Aydogdu I., Siap I.: On \(\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}\)-additive codes. Linear Multilinear Algebra 63(10), 2089–2102 (2015).

    Article  MathSciNet  Google Scholar 

  4. Aydogdu I., Abualrub T., Siap I.: On \(\mathbb{Z}_2\mathbb{Z}_2[u]\)-additive codes. Int. J. Comput. Math. 92(9), 1806–1814 (2015).

    Article  MathSciNet  Google Scholar 

  5. Aydogdu I., Abualrub T., Siap I.: \(\mathbb{Z}_2\mathbb{Z}_2[u]\)-cyclic and constacyclic codes. IEEE Trans. Inf. Theory 63(8), 4883–4893 (2017).

    Article  Google Scholar 

  6. Aydogdu I., Siap I., Ten-Valls R.: On the structure of \(\mathbb{Z}_2\mathbb{Z}_2[u^3]\)-linear and cyclic codes. Finite Fields Appl. 48, 241–260 (2017).

    Article  MathSciNet  Google Scholar 

  7. Borges J., Fernández-Córdoba C., Pujol J., Rifà J., Villanueva M.: \(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010).

    Article  MathSciNet  Google Scholar 

  8. Borges J., Fernández-Córdoba C., Ten-Valls R.: \(\mathbb{Z}_2\)-double cyclic codes. Des. Codes Cryptogr. 86(3), 463–479 (2018).

    Article  MathSciNet  Google Scholar 

  9. Bosma W., Cannon J.: Handbook of Magma Functions. University of Sydney, Sydney (1995).

    Google Scholar 

  10. Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996).

    Article  Google Scholar 

  11. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).

    Article  MathSciNet  Google Scholar 

  12. Dinh H.Q., López-Permouth S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50(8), 1728–1744 (2004).

    Article  MathSciNet  Google Scholar 

  13. Edel Y.: Some good quantum twisted codes. https://www.mathi.uni-heidelberg.de/~yves/Matrizen/QTBCH/QTBCHIndex.html. (2020). Last accessed 7 Sept 2021.

  14. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de (1995). Last accessed 7 Sept 2021.

  15. Guenda K., Gulliver T.A.: Quantum codes over rings. Int. J. Quantum Inf. 12(4), 1–11 (2014).

    Article  MathSciNet  Google Scholar 

  16. Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \(\mathbb{Z}_4\)-linearity of Kerdock, Preperata, Goethals and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994).

    Article  Google Scholar 

  17. Kai X., Zhu S.: Quaternary construction of quantum codes from cyclic codes over \(\mathbb{F}_4+u\mathbb{F}_4\). Int. J. Quantum Inf. 9(2), 689–700 (2011).

    Article  MathSciNet  Google Scholar 

  18. Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006).

    Article  MathSciNet  Google Scholar 

  19. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010).

    Book  Google Scholar 

  20. Qian J., Ma W., Wang X.: Quantum error-correcting codes from quasi-cyclic codes. Int. J. Quantum Inf. 6, 1263–1269 (2008).

    Article  Google Scholar 

  21. Qian J., Ma W., Guo W.: Quantum codes from cyclic codes over finite rings. Int. J. Quantum Inf. 7, 1277–1283 (2009).

    Article  Google Scholar 

  22. Sari M., Siap I.: Quantum codes over a class of finite chain rings. Quantum Inf. Comput. 16(1–2), 0039–0049 (2016).

    MathSciNet  Google Scholar 

  23. Shor P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A. 52(4), 2493–2496 (1995).

    Article  Google Scholar 

  24. Singh A.K., Kewat P.K.: On cyclic codes over the ring \(\mathbb{Z}_p[u]/\langle u^k\rangle \). Des. Codes Cryptogr. 74, 1–13 (2015).

    Article  MathSciNet  Google Scholar 

  25. Steane A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996).

    Article  MathSciNet  Google Scholar 

  26. Steane A.M.: Simple quantum error-correcting codes. Phys. Rev. A 54(6), 4741–4751 (1996).

    Article  MathSciNet  Google Scholar 

  27. Tang Y., Zhu S., Kai X., Ding J.: New quantum codes from dual-containing cyclic codes over finite rings. Quantum Inf. Process. 15(11), 4489–4500 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions that greatly improved the presentation of the paper. The first author would like to thank Ministry of Human Resource Development (MHRD), India for providing financial support.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. D. Key.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Bhaintwal, M. Quantum codes from \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \)-cyclic codes. Des. Codes Cryptogr. 90, 343–366 (2022). https://doi.org/10.1007/s10623-021-00978-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00978-1

Keywords

Mathematics Subject Classification

Navigation