Skip to main content
Log in

An improved upper bound on self-dual codes over finite fields GF(11), GF(19), and GF(23)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

This paper gives new methods of constructing symmetric self-dual codes over a finite field GF(q) where q is a power of an odd prime. These methods are motivated by the well-known Pless symmetry codes and quadratic double circulant codes. Using these methods, we construct an amount of symmetric self-dual codes over GF(11), GF(19), and GF(23) of every length less than 42. We also find 153 new self-dual codes up to equivalence: they are [32, 16, 12], [36, 18, 13], and [40, 20, 14] codes over GF(11), [36, 18, 14] and [40, 20, 15] codes over GF(19), and [32, 16, 12], [36, 18, 14], and [40, 20, 15] codes over GF(23). They all have new parameters with respect to self-dual codes. Consequently, we improve bounds on the highest minimum distance of self-dual codes, which have not been significantly updated for almost two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball S.: On sets of vectors of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc. 14(3), 733–748 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bannai E., Dougherty S.T., Harada M., Oura M.: Type II codes, even unimodular lattices, and invariant rings. IEEE Trans. Inform. Theory 45(4), 1194–1205 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  3. Be’Ery I., Raviv N., Raviv T., Be’Ery Y.: Active deep decoding of linear codes. IEEE Trans. Commun. 68(2), 728–736 (2019).

    Article  Google Scholar 

  4. Bernhard R.: Codes and Siegel modular forms. Discret. Math. 148(1–3), 175–204 (1996).

    MathSciNet  MATH  Google Scholar 

  5. Betsumiya K., Georgiou S., Gulliver T.A., Harada M.: On self-dual codes over some prime fields. Discret. Math. 262(1–3), 37–58 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  6. Cannon J.: Playoust: An Introduction to Magma. University of Sydney, Sydney (1994).

    Google Scholar 

  7. Çalkavur S., Solé P.: Secret sharing, zero sum sets, and Hamming codes. Mathematics 8(10), 1644 (2020).

    Article  Google Scholar 

  8. Choi W.-H., Kim J.-L.: Self-dual codes, symmetric matrices, and eigenvectors. IEEE Access 9, 104294–104303 (2021). https://doi.org/10.1109/ACCESS.2021.3099434.

    Article  Google Scholar 

  9. Conway J.H., Sloane N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn Springer, New York (1999).

    Book  MATH  Google Scholar 

  10. Dougherty S.T., Gildea J., Kaya A.: \(2^n\) Bordered constructions of self-dual codes from group rings. Finite Fields Appl. 67, 101692 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  11. De Boer M.A.: Almost MDS codes. Des. Codes Cryptogr. 9(2), 143–155 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. Gaborit P.: Quadratic double circulant codes over fields. J. Comb. Theory Ser. A 97(1), 85–107 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. Grassl M.D.: On self-dual MDS codes. In: ISIT 2008, Toronto, Canada, July 6–11, pp. 1954–1957 (2008).

  14. Grassl M., Gulliver T.A.: On circulant self-dual codes over small fields. Des. Codes Cryptogr. 52(1), 57 (2009). https://doi.org/10.1007/s10623-009-9267-1.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gulliver T.A., Kim J.-L., Lee Y.: New MDS or near-MDS self-dual codes. IEEE Trans. Inform. Theory 54(9), 4354–4360 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. Harada M., Munemasa A., Tonchev V.D.: Self-dual codes and the nonexistence of a quasi-symmetric 2-(37, 9, 8) design with intersection numbers 1 and 3. J. Comb. Des. 25(10), 469–476 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2010).

    MATH  Google Scholar 

  18. Huang L., Zhang H., Li R., Ge Y., Wang J.: AI coding: learning to construct error correction codes. IEEE Trans. Commun. 68(1), 26–39 (2019).

    Article  Google Scholar 

  19. Kim H.J., Lee Y.: Extremal quasi-cyclic self-dual codes over finite fields. Finite Fields Appl. 52, 301–318 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim J.-L.: Generator matrices for this paper. https://cicagolab.sogang.ac.kr/cicagolab/2657.html.

  21. Park Y.H.: The classification of self-dual modular codes. Finite Fields Appl. 17(5), 442–460 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  22. Pless V.: Symmetry codes and their invariant subcodes. J. Comb. Theory Ser. A 18(1), 116–125 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  23. Pless V.: Symmetry codes over GF (3) and new five-designs. J. Comb. Theory Ser. A 12(1), 119–142 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  24. Sendrier N.: Code-based cryptography: state of the art and perspectives. IEEE Secur. Privacy 15(4), 44–50 (2017).

    Article  Google Scholar 

  25. Shi M., Sok L., Solé P., Çalkavur S.: Self-dual codes and orthogonal matrices over large finite fields. Finite Fields Appl. 54, 297–314 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  26. Sok L.: Explicit constructions of MDS self-dual codes. IEEE Trans. Inform. Theory 66(6), 2954877 (2020). https://doi.org/10.1109/TIT.2019.2954877.

    Article  MathSciNet  MATH  Google Scholar 

  27. Sok L.: New families of self-dual codes. Des. Codes Cryptogr. 89, 823–841 (2021). https://doi.org/10.1007/s10623-021-00847-x.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Dr. Markus Grassl for his helpful comments which was crucial for the implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Lark Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author (Whan-Hyuk Choi) is supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (NRF-2019R1I1A1A01057755) and is supported by NRF under the project code 2020K2A9A1A06108874. The author (Jon-Lark Kim) is supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (NRF-2019R1A2C1088676) and is supported by NRF under the project code 2020K2A9A1A06108874.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue: On Coding Theory and Combinatorics: In Memory of Vera Pless”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, W.H., Kim, J.L. An improved upper bound on self-dual codes over finite fields GF(11), GF(19), and GF(23). Des. Codes Cryptogr. 90, 2735–2751 (2022). https://doi.org/10.1007/s10623-021-00968-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00968-3

Keywords

Mathematics Subject Classification

Navigation