Skip to main content
Log in

Five families of the narrow-sense primitive BCH codes over finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

It is an interesting problem to determine the parameters of BCH codes, due to their wide applications. In this paper, we determine the dimension and the Bose distance of five families of the narrow-sense primitive BCH codes with the following designed distances:

  1. (1)

    \(\delta _{(a,b)}=a\frac{q^m-1}{q-1}+b\frac{q^m-1}{q^2-1}\), where m is even, \(0\le a \le q-1\), \(1\le b \le q-1\), \(1\le a+b \le q-1\).

  2. (2)

    \(\tilde{\delta }_{(a,b)}=aq^{m-1}+(a+b)q^{m-2}-1\), where m is even, \(0\le a \le q-1\), \(1\le b \le q-1\), \(1\le a+b \le q-1\).

  3. (3)

    \({\delta _{(a,c)}}=a\frac{q^m-1}{q-1}+c\frac{q^{m-1}-1}{q-1}\), where \(m\ge 2\), \(0\le a \le q-1\), \(1\le c \le q-1\), \(1\le a+c \le q-1\).

  4. (4)

    \({\delta }'_{(a,t)}=a\frac{q^{m}-1}{q-1}+\frac{q^{m-1}-1}{q-1}-t\), where \(m\ge 3\), \(0\le a \le q-2\), \(a+2\le t \le q-1\).

  5. (5)

    \({\delta }''_{(a,c,t)}=a\frac{q^{m}-1}{q-1}+c\frac{q^{m-1}-1}{q-1}-t\), where \(m\ge 3\), \(0\le a \le q-3\), \(2\le c \le q-1\), \(1\le a+c \le q-1\), \(1\le t \le c-1\).

Moreover, we obtain the exact parameters of two subfamilies of BCH codes with designed distances \(\bar{\delta }= b\frac{q^m-1}{q^2-1}\) and \(\delta _{(a,t)}= (at+1)\frac{q^m-1}{t(q-1)}\) with even m, \(1\le a \le \big \lfloor \frac{q-2}{t}\big \rfloor \), \(1\le b\le q-1\), \(t>1\) and \(t|(q+1)\). Note that we get the narrow-sense primitive BCH codes with flexible designed distance as to abct. Finally, we obtain a lot of the optimal or the best narrow-sense primitive BCH codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Augot D., Sendrier N.: Idempotents and the BCH bound. IEEE Trans. Inf. Theory 40(1), 204–207 (1994).

    Article  Google Scholar 

  2. Augot D., Charpin P., Sendrier N.: Studying the locator polynomials of minimum weight codewords of BCH codes. IEEE Trans. Inf. Theory 38(3), 960–973 (1992).

    Article  MathSciNet  Google Scholar 

  3. Bose R., Ray-Chaudhuri D.: On a class of error correcting binary group codes. Inf. Control 3(1), 68–79 (1960).

    Article  MathSciNet  Google Scholar 

  4. Charpin P.: Weight distributions of cosets of two-error-correcting binary BCH codes, extended or not. IEEE Trans. Inf. Theory 40(5), 1425–1442 (1994).

    Article  MathSciNet  Google Scholar 

  5. Charpin P.: Open problems on cyclic codes. In: Pless V., Huffman W.C. (eds.) Handbook Coding Theory, vol. 1. Elsevier, Amsterdam (1998).

    Google Scholar 

  6. Cherchem A., Jamous A., Liu H., Maouche Y.: Some new results on dimension and Bose distance for various classes of BCH codes. Finite Fields Appl. 65, 101673 (2020).

    Article  MathSciNet  Google Scholar 

  7. Ding C.: Parameters of several classes of BCH codes. IEEE Trans. Inf. Theory 61(10), 5322–5330 (2015).

    Article  MathSciNet  Google Scholar 

  8. Ding C., Du X., Zhou Z.: The Bose and minimum distance of a class of BCH codes. IEEE Trans. Inf. Theory 61(5), 2351–2356 (2015).

    Article  MathSciNet  Google Scholar 

  9. Ding C., Fan C., Zhou Z.: The dimension and minimum distance of two classes of primitive BCH codes. Finite Fields Appl. 45, 237–263 (2017).

    Article  MathSciNet  Google Scholar 

  10. Hocquenghem A.: Codes correcteurs d’erreurs. Chiffres (Paris) 2, 147–156 (1959).

    MathSciNet  Google Scholar 

  11. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  12. Kasami T., Lin S.: Some results on the minimum weight of BCH codes. IEEE Trans. Inf. Theory 18(6), 824–825 (1972).

    Article  MathSciNet  Google Scholar 

  13. Li S.: The minimum distance of some narrow-sense primitive BCH codes. SIAM J. Discret. Math. 31, 2530–2569 (2017).

    Article  MathSciNet  Google Scholar 

  14. Li S., Ding C., Xiong M., Ge G.: Narrow-sense BCH codes over GF(\(q\)) with length \(n =\frac{q^m-1}{q-1}\). IEEE Trans. Inf. Theory 63(11), 7219–7236 (2017).

    Article  Google Scholar 

  15. Li C., Wu P., Liu F.: On two classes of primitive BCH codes and some related codes. IEEE Trans. Inf. Theory 65(6), 3830–3840 (2019).

    Article  MathSciNet  Google Scholar 

  16. Liu H., Ding C., Li C.: Dimensions of three types of BCH codes over GF(\(q\)). Discret. Math. 340, 1910–1927 (2017).

    Article  MathSciNet  Google Scholar 

  17. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Codes. North-Holland Mathematical Library, North Holland, Amsterdam (1977).

    MATH  Google Scholar 

  18. Mann H.B.: On the number of information symbols in Bose-Chaudhuri codes. Inf. Control 5(2), 153–162 (1962).

    Article  MathSciNet  Google Scholar 

  19. Noguchi S., Lu X., Jimbo M., Miao Y.: BCH codes with minimum distance proportion to code length. SIAM J. Discret. Math. 35(1), 179–193 (2021).

    Article  Google Scholar 

  20. Yue D., Hu Z.: On the dimension and minimum distance of BCH codes over GF(q). J. Electron. 13(3), 216–221 (1996).

    Google Scholar 

  21. Zhu S., Sun Z., Kai X.: A class of narrow-sense BCH codes. IEEE Trans. Inf. Theory 65(8), 4699–4714 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant Nos. 61772168, 61972126 and 61802102 and the Anhui Provincial Natural Science Foundation under Grant No. 2008085QA04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixin Zhu.

Additional information

Communicated by Y. Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, B., Zhu, S. & Kai, X. Five families of the narrow-sense primitive BCH codes over finite fields. Des. Codes Cryptogr. 89, 2679–2696 (2021). https://doi.org/10.1007/s10623-021-00942-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00942-z

Keywords

Mathematics Subject Classification

Navigation