Skip to main content
Log in

On Pless symmetry codes, ternary QR codes, and related Hadamard matrices and designs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

It is proved that a code L(q) which is monomially equivalent to the Pless symmetry code C(q) of length \(2q+2\) contains the (0,1)-incidence matrix of a Hadamard 3-\((2q+2,q+1,(q-1)/2)\) design D(q) associated with a Paley–Hadamard matrix of type II. Similarly, any ternary extended quadratic residue code contains the incidence matrix of a Hadamard 3-design associated with a Paley–Hadamard matrix of type I. If \(q=5, 11, 17, 23\), then the full permutation automorphism group of L(q) coincides with the full automorphism group of D(q), and a similar result holds for the ternary extended quadratic residue codes of lengths 24 and 48. All Hadamard matrices of order 36 formed by codewords of the Pless symmetry code C(17) are enumerated and classified up to equivalence. There are two equivalence classes of such matrices: the Paley–Hadamard matrix H of type I with a full automorphism group of order 19584, and a second regular Hadamard matrix \(H'\) such that the symmetric 2-(36, 15, 6) design D associated with \(H'\) has trivial full automorphism group, and the incidence matrix of D spans a ternary code equivalent to C(17).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The symmetry code for \(q=5\) is equivalent to the extended ternary Golay code.

  2. This is the order of the Paley–Hadamard matrix of Type II for \(q=17\) [7].

References

  1. Assmus E.F. Jr., Key J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992).

    Book  MATH  Google Scholar 

  2. Assmus E.F. Jr., Key J.D.: Hadamard matrices and their designs: a coding-theoretic approach. Trans. Am. Math. Soc. 330(1), 269–293 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. Assmus E.F. Jr., Mattson H.F. Jr.: New 5-designs. J. Combin. Theory Ser. A 6, 122–151 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  4. Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn Cambridge University Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  5. Bosma W., Cannon J.: Handbook of Magma Functions. Department of Mathematics, University of Sydney, Sydney (1994).

    MATH  Google Scholar 

  6. Bussemaker F.C., Tonchev V.D.: New extremal doubly-even codes of length 56 derived from Hadamard matrices of order 28. Discret. Math. 76, 45–49 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  7. de Launey W., Stafford R.M.: On the automorphisms of Palye’s type II Hadamard matrix. Discret. Math. 308, 2910–2924 (2008).

    Article  MATH  Google Scholar 

  8. Hall M. Jr.: Note on the Mathieu group \(M_{12}\). Arch. Math. 13, 334–340 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  9. Hall M. Jr.: Combinatorial Theory. Wiley, New York (1986).

    MATH  Google Scholar 

  10. Harada M., Munemasa A.: A complete classification of ternary self-dual codes of length 24. J. Combin. Theory Ser. A 116, 1063–1072 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. Huffman W.C.: On extremal self-dual ternary codes of lengths 28 to 40. IEEE Trans. Inf. Theory 38(4), 1395–1400 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  12. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  13. Kantor W.M.: Automorphism groups of Hadamard matrices. J. Combin. Theory Ser. A 6, 279–281 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  14. Lam C.W.H., Thiel L., Pautasso A.: On ternary codes generated by Hadamard matrices of order 24. Congr. Num. 89, 7–14 (1992).

    MathSciNet  MATH  Google Scholar 

  15. Leon J.S., Pless V., Sloane N.J.A.: On ternary self-dual codes of length 24. IEEE Trans. Inf. Theory 27(2), 176–180 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  16. Mallows C.L., Sloane N.J.A.: An upper bound for self-dual codes. Inf. Control 22, 188–200 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  17. Nebe G.: On extremal self-dual ternary codes of length 48, Int. J. Combinat. https://doi.org/10.1155/2012/154281 (2012).

  18. Nebe G., Villar D.: An analogue of the Pless symmetry codes. In: Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria pp. 158–163 (2013).

  19. Niskanen S., Östergård P.R.J.: Cliquer User’s Guide, Version 1.0. Tech. Rep. T48, Communications Laboratory, Helsinki University of Technology, Espoo, Finland (2003).

  20. Norman C.W.: Nonisomorphic Hadamard designs. J. Combin. Theory Ser. A 21, 336–344 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  21. Paley R.E.A.C.: On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933).

    Article  MATH  Google Scholar 

  22. Pless V.: On a new family of symmetry codes and related new five-designs. Bull. Am. Math. Soc. 75(6), 1339–1342 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  23. Pless V.: Symmetry codes over \(GF(3)\) and new five-designs. J. Combin. Theory Ser. A 12, 119–142 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  24. Pless V., Tonchev V.D.: Self-dual codes over \(GF(7)\). IEEE Trans. Info. Theory 33, 723–727 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  25. Rains E.M., Sloane N.J.: Self-dual codes. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory. Elsevier, Amsterdam (1998).

    Google Scholar 

  26. Tonchev V.D.: Hadamard matrices of order 28 with an automorphism of order 13. J. Combin. Theory Ser. A 35, 43–57 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  27. Tonchev V.D.: Hadamard matrices of order 28 with an automorphism of order 7. J. Combin. Theory Ser. A 40, 62–81 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  28. Tonchev V.D.: Hadamard matrices of order 36 with automorphisms of order 17. Nogoya Math. J. 104, 163–174 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  29. Tonchev V.D.: Self-orthogonal designs and extremal dobly-even codes. J. Combin. Theory Ser. A 52, 197–205 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  30. Tonchev V.D.: Combinatorial Configurations. Wiley, New York (1998).

    Google Scholar 

  31. Tonchev V.D.: Codes and designs. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, pp. 1229–1268. Elsevier, Amsterdam (1998).

    Google Scholar 

Download references

Acknowledgements

The author thanks Cary Huffman for reading a preliminary version of this paper and making several useful suggestions that led to an improvement of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir D. Tonchev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue: On Coding Theory and Combinatorics: In Memory of Vera Pless”

Appendix

Appendix

$$\begin{aligned}&1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1\\&0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1\\&0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0\\&0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 1\\&0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1\\&0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0\\&0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 0\\&0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1\\&0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0\\&1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0\\&0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0\\&0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0\\&0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0\\&1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1\\&1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0\\&0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1\\&0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0\\&1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0\\&1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0\\&0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0\\&1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0\\&0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0\\&1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1\\&1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 1\\&0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1\\&1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0\\&0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0\\&0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1\\&0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1\\&0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1\\&1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1\\&1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 0\\&0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0\\&1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0 0\\&1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1\\&1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 \end{aligned}$$

A 2-(36, 15, 6) design associated with the Pless symmetry code of length 36

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonchev, V.D. On Pless symmetry codes, ternary QR codes, and related Hadamard matrices and designs. Des. Codes Cryptogr. 90, 2753–2762 (2022). https://doi.org/10.1007/s10623-021-00941-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00941-0

Keywords

Mathematics Subject Classification

Navigation