Skip to main content
Log in

The 2-adic complexity of Yu-Gong sequences with interleaved structure and optimal autocorrelation magnitude

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In 2008, a class of binary sequences of period \(N=4(2^k-1)(2^k+1)\) with optimal autocorrelation magnitude has been presented by Yu and Gong based on an m-sequence, the perfect sequence (0, 1, 1, 1) of period 4 and interleaving technique. In this paper, we study the 2-adic complexity of these sequences. Our result shows that it is larger than \(N-2\lceil \mathrm {log}_2N\rceil +4\) (which is far larger than N/2) and could attain the maximum value N if suitable parameters are chosen, i.e., the 2-adic complexity of this class of interleaved sequences is large enough to resist the Rational Approximation Algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arasu K.T., Ding C., Helleseth T., Kumar P.V., Martinsen H.M.: Almost difference sets and their sequences with optimal autocorrelation. IEEE Trans. Inform. Theory 47(7), 2934–2943 (2001).

    Article  MathSciNet  Google Scholar 

  2. Fan C.: The linear complexity of a class of binary sequences with optimal autocorrelation. Des. Codes Cryptogr. 86, 2441–2450 (2018).

    Article  MathSciNet  Google Scholar 

  3. Gong G.: Theory and applications of \(q\)-ary interleaved sequences. IEEE Trans. Inform. Theory 41(2), 400–411 (1995).

    Article  MathSciNet  Google Scholar 

  4. Hofer R., Winterhof A.: On the 2-adic complexity of the two-prime generator. IEEE Trans. Inf. Theory 64(8), 5957–5960 (2018).

    Article  MathSciNet  Google Scholar 

  5. Hu H.: Comments on “ a new method to compute the 2-adic complexity of binary sequences. IEEE Trans. Inform. Theory 60(9), 5803–5804 (2014).

    Article  MathSciNet  Google Scholar 

  6. Klapper A., Goresky M.: Feedback shift registers, 2-adic span, and combiners with memory. J. Cryptol. 10, 111–147 (1997).

    Article  MathSciNet  Google Scholar 

  7. Li N., Tang X.: On the linear complexity of binary sequences of period \(4N\) with optimal autocorrelation/magnitude. IEEE Trans. Inform. Theory 57(11), 7597–7604 (2011).

    Article  MathSciNet  Google Scholar 

  8. Lüke H.D.: Sequences and arrays with perfect periodic correlation. IEEE Trans. Aerosp. Electron. Syst. 24(3), 287–294 (1988).

    Article  Google Scholar 

  9. Su W., Yang Y., Fan C.: New optimal binary sequences with period \(4p\) via interleaving Ding-Helleseth-Lam sequences. Des. Codes Cryptogr. 86, 1329–1338 (2018).

    Article  MathSciNet  Google Scholar 

  10. Sun Y., Wang Q., Yan T.: The 2-adic complexity of a class of binary sequences with optimal autocorrelation magnitude. Cryptogr. Commun. 12(4), 675–683 (2020).

    Article  MathSciNet  Google Scholar 

  11. Sun Y., Wang Q., Yan T.: The exact autocorrelation distribution and 2-adic complexity of a class of binary sequences with almost optimal autocorrelation. Cryptogr. Commun. 10(3), 467–477 (2018).

    Article  MathSciNet  Google Scholar 

  12. Tang X., Ding C.: New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value. IEEE Trans. Inform. Theory 56(12), 6398–6405 (2010).

    Article  MathSciNet  Google Scholar 

  13. Tang X., Gong G.: New constructions of binary sequences with optimal autocorrelation value/magnitude. IEEE Trans. Inform. Theory 56(3), 1278–1286 (2010).

    Article  MathSciNet  Google Scholar 

  14. Xiong H., Qu L., Li C.: A new method to compute the 2-adic complexity of binary sequences. IEEE Trans. Inform. Theory 60(4), 2399–2406 (2014).

    Article  MathSciNet  Google Scholar 

  15. Xiong H., Qu L., Li C.: 2-Adic complexity of binary sequences with interleaved structure. Finite Fields Their Appl. 33, 14–28 (2015).

    Article  MathSciNet  Google Scholar 

  16. Yan T., Chen Z., Li B.: A general construction of binary interleaved sequences of period \(4N\) with optimal autocorrelation. Inf. Sci. 287, 26–31 (2014).

    Article  MathSciNet  Google Scholar 

  17. Yang, M., Zhang, L., Feng,K.: On the 2-adic complexity of a class of binary sequences of period \(4p\) with optimal autocorrelation magnitude. IEEE International Symposium on Information Theory (2020).

  18. Yu N.Y., Gong G.: New binary sequences with optimal autocorrelation magnitude. IEEE Trans. Inform. Theory 54(10), 4771–4779 (2008).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Sun.

Additional information

Communicated by T. Helleseth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is financially supported by the National Natural Science Foundation of China (Nos. 61902429, 11775306), the Fundamental Research Funds for the Central Universities (No. 19CX02058A), Shandong Provincial Natural Science Foundation of China (No. ZR2019MF070).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yan, T. & Wang, Q. The 2-adic complexity of Yu-Gong sequences with interleaved structure and optimal autocorrelation magnitude . Des. Codes Cryptogr. 89, 695–707 (2021). https://doi.org/10.1007/s10623-020-00841-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00841-9

Keywords

Mathematics Subject Classification

Navigation