Skip to main content

On the weight distribution of some minimal codes


Minimal codes are a class of linear codes which gained interest in the last years, thanks to their connections to secret sharing schemes. In this paper we provide the weight distributions and the parameters of families of minimal codes recently introduced by C. Tang, Y. Qiu, Q. Liao, Z. Zhou, answering some open questions.

This is a preview of subscription content, access via your institution.


  1. Alfarano G.N., Borello M., Neri A.: A geometric characterization of minimal codes and their asymptotic performance. Adv. Math. Commun.

  2. Ashikhmin A., Barg A.: Minimal vectors in linear codes. IEEE Trans. Inf. Theory 44(5), 2010–2017 (1998).

    Article  MathSciNet  Google Scholar 

  3. Bartoli D., Bonini M.: Minimal linear codes in odd characteristic. IEEE Trans. Inf. Theory 65(7), 4152–4155 (2019).

    Article  MathSciNet  Google Scholar 

  4. Bartoli D., Bonini M., Gűnes B.: An inductive construction of minimal codes. arXiv:1911.09093 (2019).

  5. Berlekamp E.R., McEliece R.J., van Tilborg H.C.A.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978).

    Article  MathSciNet  Google Scholar 

  6. Blakley G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS National Computer Conference, New York, USA, pp. 313–317 (1979).

  7. Bonini M., Borello M.: Minimal linear codes arising from blocking sets. J. Algebr. Comb.

  8. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).

    Article  MathSciNet  Google Scholar 

  9. Bruck J., Naor M.: The hardness of decoding linear codes with preprocessing. IEEE Trans. Inf. Theory 36(2), 381–385 (1990).

    Article  MathSciNet  Google Scholar 

  10. Carlet C., Ding C., Yuan J.: Linear codes from highly nonlinear functions and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005).

    Article  Google Scholar 

  11. Chabanne H., Cohen G., Patey A.: Towards secure two-party computation from the wire-tap channel. In: Information Security and Cryptology—ICISC 2013, Heidelberg, Germany, pp. 34–46 (2014).

  12. Chang S., Hyun J.Y.: Linear codes from simplicial complexes. Des. Codes Cryptogr. 86(10), 2167–2181 (2018).

    Article  MathSciNet  Google Scholar 

  13. Cohen G.D., Mesnager S., Patey A.: On minimal and quasi-minimal linear codes. In: IMACC 2013, Heidelberg, Germany, pp. 85–98 (2013).

  14. Ding C.: Linear codes from some \(2\)-designs. IEEE Trans. Inf. Theory 60(6), 3265–3275 (2015).

    Article  MathSciNet  Google Scholar 

  15. Ding C., Niederreiter H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 53, 2274–2277 (2007).

    Article  MathSciNet  Google Scholar 

  16. Ding C., Luo J., Niederreiter H.: Two weight codes punctured from irreducible cyclic codes. In: Li Y., Ling S., Niederreiter H., Wang H., Xing C., Zhang S. (eds.) Proceedings of the First International Workshop on Coding Theory and Cryptography, pp. 119–124. Singapore, World Scientific (2008).

    Google Scholar 

  17. Ding C., Li N., Li C., Zhou Z.: Three-weight cyclic codes and their weight distributions. Discret. Math. 339(2), 415–427 (2016).

    Article  MathSciNet  Google Scholar 

  18. Ding C., Heng Z., Zhou Z.: Minimal binary linear codes. IEEE Trans. Inf. Theory 64(10), 6536–6545 (2018).

    Article  MathSciNet  Google Scholar 

  19. Heng Z., Ding C., Zhou Z.: Minimal linear codes over finite fields. Finite Fields Appl. 54, 176–196 (2018).

    Article  MathSciNet  Google Scholar 

  20. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2010).

    MATH  Google Scholar 

  21. Kløve T.: Codes for Error Detection. World Scientific, Singapore (2007).

    Book  Google Scholar 

  22. Massey J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish–Russian International Workshop on Information Theory, Sweden, pp. 276–279 (1993)

  23. Massey J.L.: Some applications of coding theory in cryptography. In: Codes and Cyphers: Cryptography and Coding IV, Essex, England, pp. 33–47 (1995)

  24. Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979).

    Article  MathSciNet  Google Scholar 

  25. Song Y., Li Z., Li Y.M.: Secret sharing with a class of minimal linear codes. Acta Electron. Sin. 41, 220–226 (2013).

    Google Scholar 

  26. Tang C., Qiu Y., Liao Q., Zhou Z.: Full Characterization of Minimal Linear Codes as Cutting Blocking Sets. arXiv:1911.09867 (2019).

  27. Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006).

    Article  MathSciNet  Google Scholar 

Download references


The research of D. Bartoli, M. Bonini, and M. Timpanella was partially supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INdAM).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daniele Bartoli.

Additional information

Communicated by C. Ding.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartoli, D., Bonini, M. & Timpanella, M. On the weight distribution of some minimal codes. Des. Codes Cryptogr. 89, 471–487 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification