Skip to main content
Log in

The complex conjugate invariants of Clifford groups

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Nebe, Rains and Sloane studied the polynomial invariants for real and complex Clifford groups and they give a new conceptual proof that these invariants are spanned by the set of complete weight enumerators of certain self-dual codes, which was first proved by Runge using modular forms. The purpose of this paper is to show that very similar results can be obtained for the invariants of the complex Clifford group \(\mathcal {X}_m\) acting on the space of conjugate polynomials in \(2^m\) variables of degree \(N_1\) in \(x_f\) and of degree \(N_2\) in their complex conjugates \(\overline{x_f}\). In particular, we show that the dimension of this space is 2, for \((N_1,N_2)=(5,5)\). This solves affirmatively Conjecture 2 given by Zhu, Kueng, Grassl and Gross. In other words if an orbit of the complex Clifford group is a projective 4-design, then it is automatically a projective 5-design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannai E., Bannai E., Tanaka H., Zhu Y.: Design theory from the viewpoint of algebraic combinatorics. Graphs Comb. 33(1), 1–41 (2017). https://doi.org/10.1007/s00373-016-1739-2.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bannai E., Nakahara M., Zhao D., Zhu Y.: On the explicit constructions of certain unitary \(t\)-designs. J. Phys. A 52(49), 495301 (2019). https://doi.org/10.1088/1751-8121/ab5009.

    Article  MathSciNet  Google Scholar 

  3. Bannai, E., Nakata, Y., Okuda, T., Zhao, D.: Explicit construction of exact unitary designs (preprint) (2020).

  4. Bannai E., Navarro G., Rizo N., Tiep P.H.: Unitary \(t\)-groups. J. Math. Soc. Jpn. (2020). https://doi.org/10.2969/jmsj/82228222.

    Article  MATH  Google Scholar 

  5. Bolt, B.: On the Clifford collineation, transform and similarity groups. III. Generators and involutions. J. Austral. Math. Soc. 2, 334–344 (1961/1962).

  6. Bolt, B., Room, T.G., Wall, G.E.: On the Clifford collineation, transform and similarity groups. I, II. J. Austral. Math. Soc. 2, 60–79, 80–96 (1961/1962).

  7. Colbourn C.J., Dinitz J.H. (eds.): Handbook of Combinatorial Designs, 2nd edn. Discrete Mathematics and its Applications (Boca Raton)Chapman & Hall, Boca Raton (2007).

    MATH  Google Scholar 

  8. Forger M.: Invariant polynomials and Molien functions. J. Math. Phys. 39(2), 1107–1141 (1998). https://doi.org/10.1063/1.532373.

    Article  MathSciNet  MATH  Google Scholar 

  9. Nebe G., Rains E.M., Sloane N.J.A.: The invariants of the Clifford groups. Des. Codes Cryptogr. 24(1), 99–121 (2001). https://doi.org/10.1023/A:1011233615437.

    Article  MathSciNet  MATH  Google Scholar 

  10. Nebe G., Rains E.M., Sloane N.J.A.: Self-Dual Codes and Invariant Theory, vol. 17. Algorithms and Computation in MathematicsSpringer, Berlin (2006).

    MATH  Google Scholar 

  11. Roy A., Scott A.J.: Unitary designs and codes. Des. Codes Cryptogr. 53(1), 13–31 (2009). https://doi.org/10.1007/s10623-009-9290-2.

    Article  MathSciNet  MATH  Google Scholar 

  12. Roy A., Suda S.: Complex spherical designs and codes. J. Comb. Des. 22(3), 105–148 (2014). https://doi.org/10.1002/jcd.21379.

    Article  MathSciNet  MATH  Google Scholar 

  13. Runge B.: On Siegel modular forms I. J. Reine Angew. Math. 436, 57–85 (1993). https://doi.org/10.1515/crll.1993.436.57.

    Article  MathSciNet  MATH  Google Scholar 

  14. Runge B.: On Siegel modular forms II. Nagoya Math. J. 138, 179–197 (1995). https://doi.org/10.1017/S0027763000005237.

    Article  MathSciNet  MATH  Google Scholar 

  15. Runge B.: Codes and Siegel modular forms. Discret. Math. 148(1–3), 175–204 (1996). https://doi.org/10.1016/0012-365X(94)00271-J.

    Article  MathSciNet  MATH  Google Scholar 

  16. Shannon C.E.: A mathematical theory of communication. Bell System Technol. J. 27(379–423), 623–656 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

    Article  MathSciNet  MATH  Google Scholar 

  17. Wall G.E.: On the Clifford collineation, transform and similarity groups. IV. An application to quadratic forms. Nagoya Math. J. 21, 199–222 (1962).

    Article  MathSciNet  Google Scholar 

  18. Webb Z.: The Clifford group forms a unitary 3-design. Quantum Info. Comput. 16(15–16), 1379–1400 (2016).

    MathSciNet  Google Scholar 

  19. Zhu, H., Kueng, R., Grassl, M., Gross, D.: The Clifford group fails gracefully to be a unitary 4-design. arXiv:1609.08172.

Download references

Acknowledgements

We thank Nebe, Rains and Sloane for fruitful discussions, especially for rectifying our understanding of the weight enumerator conjecture. The first author thanks TGMRC (Three Gorges Mathematical Research Center) in China Three Gorges University, in Yichang, Hubei, China, for supporting his visits there in April and August 2019 to work on the topics related to this research. The second author is supported by JSPS KAKENHI (17K05164). The third author is supported in part by NSFC (11671258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Zhao.

Additional information

Communicated by C. Praeger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannai, E., Oura, M. & Zhao, D. The complex conjugate invariants of Clifford groups. Des. Codes Cryptogr. 89, 341–350 (2021). https://doi.org/10.1007/s10623-020-00819-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00819-7

Keywords

Mathematics Subject Classification

Navigation