Skip to main content

On non-binary traceability set systems


We introduce non-binary IPP set systems with traceability properties that have IPP codes and binary IPP set systems with traceability capabilities as particular cases. We prove an analogue of the Gilbert–Varshamov bound for such systems.

This is a preview of subscription content, access via your institution.


  1. 1.

    Alon N., Cohen G., Krivelevich M., Litsyn S.: Generalized hashing and parent-identifying codes. J. Comb Theory Ser. A 104(1), 207–215 (2003).

    MathSciNet  Article  Google Scholar 

  2. 2.

    Barg A., Cohen G., Encheva S., Kabatiansky G., Zémor G.: A hypergraph approach to the identifying parent property: the case of multiple parents. SIAM J. Discret. Math. 14(3), 423–431 (2001).

    MathSciNet  Article  Google Scholar 

  3. 3.

    Blackburn S.: Combinatorial schemes for protecting digital content. Surv. comb. 307, 43–78 (2003).

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Blackburn S., Etzion T., Ng S.L.: Traceability codes. J. Comb. Theory Ser. A 117(8), 1049–1057 (2010).

    MathSciNet  Article  Google Scholar 

  5. 5.

    Blakley G.R.: Safeguarding cryptographic keys. Proc. Natl. Comput. Conf. 48, 313 (1979).

    Google Scholar 

  6. 6.

    Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Proceedings of the Annual International Cryptology Conference pp. 257–270 (1994)

  7. 7.

    Collins M.J.: Upper bounds for parent-identifying set systems. Des. Codes Crypt. 51(2), 167–173 (2009).

    MathSciNet  Article  Google Scholar 

  8. 8.

    D’yachkov A., Rykov V.: Bounds on the length of disjunctive codes. Probl. Pereda. Inf. 18(3), 7–13 (1982).

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Egorova E.: On generalization of ipp codes and ipp set systems. Probl. Inf. Transm. 55(3), 241–253 (2019).

    MathSciNet  Article  Google Scholar 

  10. 10.

    Egorova, E., Fernandez, M., Kabatiansky, G.: A construction of traceability set systems with polynomial tracing algorithm. In: Proceedings of the International Symposium on Information Theory, ISIT (2019)

  11. 11.

    Egorova, E., Kabatiansky, G.: Analysis of two tracing traitor schemes via coding theory. In: Proceedings of the International Castle Meeting on Coding Theory and Applications, pp. 84–92 (2017)

  12. 12.

    Egorova, E., Vorobyev, I.: New lower bound on the rate of traceability set systems. In: Proceedings of the XVI International Symposium Problems of Redundancy in Information and Control Systems, pp. 93–98 (2019)

  13. 13.

    Erdös P., Frankl P., Füredi Z.: Families of finite sets in which no set is covered by the union of r others. Isr. J. Math. 51(1), 79–89 (1985).

    MathSciNet  Article  Google Scholar 

  14. 14.

    Fiat, A., Naor, M.: Broadcast encryption. In: Proceedings of the Annual International Cryptology Conference, pp. 480–491 (1993)

  15. 15.

    Gu Y., Cheng M., Kabatiansky G., Miao Y.: Probabilistic existence results for parent-identifying schemes. IEEE Trans. Inf. Theory (2019).

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Gu Y., Miao Y.: Bounds on traceability schemes. IEEE Trans. Inf. Theory 64(5), 3450–3460 (2017).

    MathSciNet  Article  Google Scholar 

  17. 17.

    Hollmann H.D., Van Lint J., Linnartz J.P., Tolhuizen L.: On codes with the identifiable parent property. J. Comb. Theory Ser. A 82(2), 121–133 (1998).

    MathSciNet  Article  Google Scholar 

  18. 18.

    Kabatiansky, G.: On the tracing traitors math. In: Proceedings of the International Conference on Codes, Cryptology, and Information Security, pp. 371–380. Springer (2019)

  19. 19.

    Kabatiansky G.: Traceability codes and their generalizations. Probl. Inf. Transm. 55(3), 283–294 (2019).

    MathSciNet  Article  Google Scholar 

  20. 20.

    Lindkvist T., Lofvenberg J., Svanstrom M.: A class of traceability codes. IEEE Trans. Inf. Theory 48(7), 2094–2096 (2002).

    MathSciNet  Article  Google Scholar 

  21. 21.

    Lofvenberg J., Larsson J.: Comments on “new results on frame-proof codes and traceability schemes”. IEEE Trans. Inf. Theory 56(11), 5888–5889 (2010).

    Article  Google Scholar 

  22. 22.

    Safavi-Naini R., Wang Y.: New results on frame-proof codes and traceability schemes. IEEE Trans. Inf. Theory 47(7), 3029–3033 (2001).

    MathSciNet  Article  Google Scholar 

  23. 23.

    Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979).

    MathSciNet  Article  Google Scholar 

  24. 24.

    Staddon J., Stinson D., Wei R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049 (2001).

    MathSciNet  Article  Google Scholar 

  25. 25.

    Stinson D., Wei R.: Combinatorial properties and constructions of traceability schemes and frameproof codes. SIAM J. Discret. Math. 11(1), 41–53 (1998).

    MathSciNet  Article  Google Scholar 

  26. 26.

    Stinson, D., Wei, R.: Key preassigned traceability schemes for broadcast encryption. In: Proceedings of the International Workshop on Selected Areas in Cryptography, pp. 144–156 (1998)

Download references


Elena Egorova, Grigory Kabatiansky: The work of E.Egorova and G.Kabatiansky has been supported by the RFBR Grants 20-07-00652

Marcel Fernandez: The work of M. Fernández has been supported by the Spanish Government Grant TEC2015-68734-R and Catalan Government Grant SGR 782.

Author information



Corresponding author

Correspondence to Elena Egorova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography 2019”.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Egorova, E., Fernandez, M. & Kabatiansky, G. On non-binary traceability set systems. Des. Codes Cryptogr. 88, 1885–1892 (2020).

Download citation


  • IPP schemes
  • IPP codes
  • IPP set system
  • Constant-weight codes

Mathematics Subject Classification

  • 94B60