Skip to main content
Log in

Computing sharp recovery structures for locally recoverable codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A locally recoverable code is an error-correcting code such that any erasure in a single coordinate of a codeword can be recovered from a small subset of other coordinates. In this article we develop an algorithm that computes a recovery structure as concise as possible for an arbitrary linear code \({\mathcal {C}}\) and a recovery method that realizes it. This algorithm also provides the locality and the dual distance of \({\mathcal {C}}\). Complexity issues are studied as well. Several examples are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashikhmin A., Barg A.: Minimal vectors in linear codes. IEEE Trans. Inf. Theory 44(5), 2010–2017 (1998).

    Article  MathSciNet  Google Scholar 

  2. Barg A., Tamo I., Vladut S.: Locally recoverable codes on algebraic curves. IEEE Trans. Inf. Theory 63, 4928–4939 (2017).

    Article  MathSciNet  Google Scholar 

  3. Barg A., Haymaker K., Howe E., Matthews G., Varilly-Alvarado A.: Locally Recoverable Codes from Algebraic Curves and Surfaces. Algebraic Geometry for Coding Theory and Cryptography 95127. Association for Women in Mathematics Series, vol. 9. Springer, Cham (2017).

    MATH  Google Scholar 

  4. Berlekamp E.R., McEliece R.J., van Tilborg H.C.A.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978).

    Article  MathSciNet  Google Scholar 

  5. Bertilsson M., Ingemarsson I.: A construction of practical secret sharing schemes using linear block codes. In: Advances in Cryptology—AUSCRYPT’92, vol. 718, pp. 67–79 (1992).

  6. Blaum M., Hetzler S.R.: Integrated interleaved codes as locally recoverable codes: properties and performance. Int. J. Inf. Coding Theory 3(4), 324–344 (2016).

    Article  MathSciNet  Google Scholar 

  7. Borges-Quintana M., Borges-Trenard M.A., Fitzpatrick P., Martínez-Moro E.: Gröbner bases and combinatorics for binary codes. Appl. Algebra Eng. Commun. Comput. 19(5), 393–411 (2008).

    Article  Google Scholar 

  8. Faldum A., Willems W.: Codes of small defect. Des. Codes Cryptogr. 10, 341–350 (1997).

    Article  MathSciNet  Google Scholar 

  9. Gopalan P., Huang C., Simitci H., Yekhanin S.: On the locality of codeword symbols. IEEE Trans. Inf. Theory 58(11), 6925–6934 (2012).

    Article  MathSciNet  Google Scholar 

  10. Horton J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. Comput. 16(2), 358–366 (1987).

    Article  MathSciNet  Google Scholar 

  11. Jin L., Ma L., Xing C.: Construction of optimal locally repairable codes via automorphism groups of rational function fields. arXiv:1710.09638 (2017).

  12. Márquez-Corbella I., Martínez-Moro E., Suárez-Canedo E.: On the ideal associated to a linear code. Adv. Math. Commun. 10(2), 229–254 (2016).

    Article  MathSciNet  Google Scholar 

  13. Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993).

  14. MinT: Database for optimal parameters of \((t, m, s)\)-nets, \((t, s)\)-sequences, orthogonal arrays, linear codes and OOAs. http://mint.sbg.ac.at/index.php.

  15. Papailiopoulos D.S., Dimakis A.G.: Locally repairable codes. IEEE Trans. Inf. Theory 60(10), 5843–5855 (2014).

    Article  MathSciNet  Google Scholar 

  16. SageMath: The Sage Mathematics Software System (Version 8.4). The Sage Developers. http://www.sagemath.org (2018).

  17. Rawat A.S., Koyluoglu O.O., Silberstein N., Vishwanath S.: Optimal locally repairable and secure codes for distributed storage systems. IEEE Trans. Inf. Theory 60(1), 212–236 (2014).

    Article  Google Scholar 

  18. Tamo I., Barg A.: A family of optimal locally recoverable codes. IEEE Trans. Inf. Theory 60(8), 4661–4676 (2014).

    Article  MathSciNet  Google Scholar 

  19. Tamo I., Barg A., Goparaju S., Calderbank R.: Cyclic LRC codes and their subfield subcodes. In: Proceedings of IEEE International Symposium on Information Theory, Hong Kong, pp. 1262–1266 (2015).

  20. Tamo I., Ye M., Barg A.: The repair problem for Reed-Solomon codes: optimal repair of single and multiple erasures with almost optimal node size. IEEE Trans. Inf. Theory 65, 2673–2695 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Márquez-Corbella.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edgar Martinez-Moro and Carlos Munuera are supported by the Spanish State Research Agency (AEI) under Grant PGC2018-096446-B-C21.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Codes, Cryptology and Curves”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Márquez-Corbella, I., Martínez-Moro, E. & Munuera, C. Computing sharp recovery structures for locally recoverable codes. Des. Codes Cryptogr. 88, 1687–1698 (2020). https://doi.org/10.1007/s10623-020-00746-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00746-7

Keywords

Mathematics Subject Classification

Navigation