Skip to main content
Log in

Flag-transitive block designs with prime replication number and almost simple groups

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this article, we study 2-designs with prime replication number admitting a flag-transitive automorphism group. The automorphism groups of these designs are point-primitive of almost simple or affine type. We determine 2-designs with prime replication number admitting an almost simple automorphism group and prove that such a design belongs to one of two infinite families of projective spaces or Witt-Bose-Shrikhande spaces or it is isomorphic to a design with parameters (6, 3, 2), (8, 4, 3), (11, 5, 2) or (12, 6, 5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alavi, S.H.: Flag-tranitive block designs and finite simple exceptional groups of Lie type. Submitted. arXiv:1908.05831

  2. Alavi S.H., Burness T.C.: Large subgroups of simple groups. J. Algebra 421, 187–233 (2015). https://doi.org/10.1016/j.jalgebra.2014.08.026.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alavi S.H., Bayat M.: Flag-transitive point-primitive symmetric designs and three dimensional projective special linear groups. Bull. Iran. Math. Soc. 42(1), 201–221 (2016).

    MathSciNet  MATH  Google Scholar 

  4. Alavi S., Bayat M., Daneshkhah A.: Symmetric designs admitting flag-transitive and point-primitive automorphism groups associated to two dimensional projective special groups. Des. Codes Cryptogr. 79, 337–351 (2016). https://doi.org/10.1007/s10623-015-0055-9.

    Article  MathSciNet  MATH  Google Scholar 

  5. Alavi, S.H., Bayat, M., Daneshkhah, A.: Symmetric designs and finite simple exceptional groups of Lie type. Submitted. arXiv:1702.01257v4

  6. Aschbacher M.: On the maximal subgroups of the finite classical groups. Invent. Math. 76(3), 469–514 (1984). https://doi.org/10.1007/BF01388470.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bray, J.N., Holt, D.F., Roney-Dougal, C.M.: The maximal subgroups of the low-dimensional finite classical groups, London Mathematical Society Lecture Note Series, vol. 407. Cambridge University Press, Cambridge (2013). With a foreword by Martin Liebeck

  8. Buekenhout F., Delandtsheer A., Doyen J.: Finite linear spaces with flag-transitive groups. J. Combin. Theory Ser. A 49(2), 268–293 (1988). https://doi.org/10.1016/0097-3165(88)90056-8.

    Article  MathSciNet  MATH  Google Scholar 

  9. Buekenhout F., Delandtsheer A., Doyen J., Kleidman P.B., Liebeck M.W., Saxl J.: Linear spaces with flag-transitive automophism groups. Geom. Dedic. 36(1), 89–94 (1990). https://doi.org/10.1007/BF00181466.

    Article  MATH  Google Scholar 

  10. Colbourn, C.J., Dinitz, J.H. (eds): Handbook of combinatorial designs, second edn. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2007)

  11. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985). Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G, Thackray.

  12. Cooperstein B.N.: Minimal degree for a permutation representation of a classical group. Israel J. Math. 30(3), 213–235 (1978).

    Article  MathSciNet  Google Scholar 

  13. Delandtsheer A.: Flag-transitive finite simple groups. Arch. Math. (Basel) 47(5), 395–400 (1986). https://doi.org/10.1007/BF01189977.

    Article  MathSciNet  MATH  Google Scholar 

  14. Dembowski P.: Finite Geometries. Springer, New York (1968).

    Book  Google Scholar 

  15. Dixon J.D., Mortimer B.: Permutation groups, Graduate Texts in Mathematics. Springer, New York (1996).

    Book  Google Scholar 

  16. Giudici, M.: Maximal subgroups of almost simple groups with socle \(PSL(2,q)\). ArXiv Mathematics e-prints (2007). arXiv:math/0703685v1

  17. Kantor W.M.: Classification of 2-transitive symmetric designs. Graphs Combin. 1(2), 165–166 (1985). https://doi.org/10.1007/BF02582940.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kleidman P., Liebeck M.: The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129. Cambridge University Press, Cambridge (1990).

    Book  Google Scholar 

  19. Lander E.S.: Symmetric designs: an algebraic approach. In: London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1983).

    Book  Google Scholar 

  20. Liebeck M.W., Saxl J., Seitz G.: On the overgroups of irreducible subgroups of the finite classical groups. Proc. Lond. Math. Soc. 50(3), 507–537 (1987). https://doi.org/10.1112/plms/s3-50.3.426.

    Article  MathSciNet  MATH  Google Scholar 

  21. Liebeck M.W., Praeger C.E., Saxl J.: On the \(2\)-closures of finite permutation groups. J. London Math. Soc. 2 37(2), 241–252 (1988). https://doi.org/10.1112/jlms/s2-37.2.241.

    Article  MathSciNet  MATH  Google Scholar 

  22. Liebeck M.W., Praeger C.E., Saxl J.: The maximal factorizations of the finite simple groups and their automorphism groups. Mem. Am. Math. Soc. 86(432), iv+151 (1990). https://doi.org/10.1090/memo/0432.

    Article  MathSciNet  MATH  Google Scholar 

  23. O’Reilly-Regueiro E.: On primitivity and reduction for flag-transitive symmetric designs. J. Combin. Theory Ser. A 109(1), 135–148 (2005). https://doi.org/10.1016/j.jcta.2004.08.002.

    Article  MathSciNet  MATH  Google Scholar 

  24. Saxl J.: On finite linear spaces with almost simple flag-transitive automorphism groups. J. Combin. Theory Ser. A 100(2), 322–348 (2002). https://doi.org/10.1006/jcta.2002.3305.

    Article  MathSciNet  MATH  Google Scholar 

  25. Seitz G.M.: Flag-transitive subgroups of Chevalley groups. Ann. Math. 2(97), 27–56 (1973).

    Article  MathSciNet  Google Scholar 

  26. Tian D., Zhou S.: Flag-transitive point-primitive symmetric \((v, k,\lambda )\) designs with \(\lambda \) at most 100. J. Comb. Des. 21(4), 127–141 (2013). https://doi.org/10.1002/jcd.21337.

    Article  MathSciNet  MATH  Google Scholar 

  27. Tian D., Zhou S.: Flag-transitive \(2\)-\((v, k,\lambda )\) symmetric designs with sporadic socle. J. Comb. Designs 23(4), 140–150 (2015).

    Article  MathSciNet  Google Scholar 

  28. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.7.9 (2015). http://www.gap-system.org

  29. Wielandt H.: Finite Permutation Groups. Translated from the German by R. Bercov. Academic Press, New York-London (1964).

  30. Zhan X., Zhou S.: Flag-transitive non-symmetric \(2\)-designs with \((r,\lambda )=1\) and sporadic socle. Des. Codes Cryptogr. 81(3), 481–487 (2016). https://doi.org/10.1007/s10623-015-0171-6.

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhan X., Zhou S.: Non-symmetric 2-designs admitting a two-dimensional projective linear group. Designs Codes Cryptogr. 86(12), 2765–2773 (2018). https://doi.org/10.1007/s10623-018-0474-5.

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou S., Wang Y.: Flag-transitive non-symmetric 2-designs with \((r,\lambda )=1\) and alternating socle. Electron. J. Combin. 22(2), 15 (2015).

    Article  MathSciNet  Google Scholar 

  33. Zhu Y., Guan H., Zhou S.: Flag-transitive 2-(v, k, \(\lambda \)) symmetric designs with (k, \(\lambda \)) = 1 and alternating socle. Front. Math. China 10(6), 1483–1496 (2015). https://doi.org/10.1007/s11464-015-0480-0.

    Article  MathSciNet  MATH  Google Scholar 

  34. Zieschang P.H.: Flag transitive automorphism groups of 2-designs with \((r,\lambda )=1\). J. Algebra 118(2), 369–375 (1988). https://doi.org/10.1016/0021-8693(88)90027-0. http://www.sciencedirect.com/science/article/pii/0021869388900270.

Download references

Acknowledgements

The authors would like to thank anonymous referees for providing us helpful and constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hassan Alavi.

Additional information

Communicated by C. E. Praeger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, S.H., Bayat, M., Choulaki, J. et al. Flag-transitive block designs with prime replication number and almost simple groups. Des. Codes Cryptogr. 88, 971–992 (2020). https://doi.org/10.1007/s10623-020-00724-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00724-z

Keywords

Mathematics Subject Classification

Navigation