Skip to main content
Log in

Full classification of permutation rational functions and complete rational functions of degree three over finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let q be a prime power, \(\mathbb {F}_q\) be the finite field of order q and \(\mathbb {F}_q(x)\) be the field of rational functions over \(\mathbb {F}_q\). In this paper we classify and count all rational functions \(\varphi \in \mathbb {F}_q(x)\) of degree 3 that induce a permutation of \(\mathbb {P}^1(\mathbb {F}_q)\). As a consequence of our classification, we can show that there is no complete permutation rational function of degree 3 unless \(3\mid q\) and \(\varphi \) is a polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amadio Guidi F., Lindqvist S., Micheli G.: Full orbit sequences in affine spaces via fractional jumps and pseudorandom number generation. Math. Comput. 88, 2005–2025 (2018).

    Article  MathSciNet  Google Scholar 

  2. Bartoli D., Giulietti M., Zini G.: On monomial complete permutation polynomials. Finite Fields Appl. 41, 132–158 (2016).

    Article  MathSciNet  Google Scholar 

  3. Bartoli D., Giulietti M., Quoos L., Zini G.: Complete permutation polynomials from exceptional polynomials. J. Number Theory 176, 46–66 (2017).

    Article  MathSciNet  Google Scholar 

  4. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. Computational algebra and number theory (London, 1993). J. Symb. Comput. 24(3–4), 235–265 (1997).

    Article  Google Scholar 

  5. Cannon J.J., Holt D.F.: The transitive permutation groups of degree 32. Exp. Math. 17(3), 307–314 (2008).

    Article  MathSciNet  Google Scholar 

  6. Charpin P., Kyureghyan G.M.: On a class of permutation polynomials over \({\mathbb{F}}_{2^{n}}\). In: Sequences and Their Applications—SETA 2008, vol. 5203 of Lecture Notes in Comput. Sci., pp. 368–376. Springer, Berlin (2008).

  7. Charpin P., Kyureghyan G.: When does \(G(x)+\gamma {\rm Tr}(H(x))\) permute \({\mathbb{F}}_{p^n}\)? Finite Fields Appl. 15(5), 615–632 (2009).

    Article  MathSciNet  Google Scholar 

  8. Cohen S.D.: Permutation group theory and permutation polynomials. In: Algebras and Combinatorics (Hong Kong, 1997), pp. 133–146 (1999)

  9. Fan X.: Permutation polynomials of degree 8 over finite fields of odd characteristic. Bull. Aust. Math. Soc., pp. 1–16 (2019).

  10. Fan X.: Permutation polynomials of degree over finite fields of characteristic 2. https://arxiv.org/abs/1903.10309 (2019).

  11. Gao S., Panario D.: Tests and constructions of irreducible polynomials over finite fields. In: Foundations of Computational Mathematics, pp. 346–361. Springer, New York (1997).

  12. Galois K.C.: Groups of cubics and quartics. https://kconrad.math.uconn.edu/blurbs/.

  13. Guidi F.A., Micheli, G.: Fractional jumps: complete characterisation and an explicit infinite family. arXiv:1805.11658 (2018).

  14. Guralnick R.M., Müller P., Saxl J.: The Rational Function Analogue of a Question of Schur and Exceptionality of Permutation Representations, vol. 773. American Mathematical Society, Providence, RI (2003).

    MATH  Google Scholar 

  15. Guralnick R.M., Tucker T.J., Zieve M.E.: Exceptional covers and bijections on rational points. In: International Mathematics Research Notices (2007).

  16. Hulpke A.: Constructing transitive permutation groups. J. Symb. Comput. 39(1), 1–30 (2005).

    Article  MathSciNet  Google Scholar 

  17. Konyagin S., Pappalardi F.: Enumerating permutation polynomials over finite fields by degree. Finite Fields Appl. 8(4), 548–553 (2002).

    Article  MathSciNet  Google Scholar 

  18. Konyagin S., Pappalardi F.: Enumerating permutation polynomials over finite fields by degree II. Finite Fields Appl. 12(1), 26–37 (2006).

    Article  MathSciNet  Google Scholar 

  19. Kosters M.: A short proof of a chebotarev density theorem for function fields. Math. Commun. 22(2), 227–233 (2017).

    MathSciNet  MATH  Google Scholar 

  20. Laigle-Chapuy Y.: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13(1), 58–70 (2007).

    Article  MathSciNet  Google Scholar 

  21. Lidl R., Niederreiter H.: Finite fields, vol. 20. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  22. Masuda A., Panario D., Wang Q.: The number of permutation binomials over \(f_{4p+ 1}\) where \( p \) and \(4 p+ 1\) are primes. Electron J. Comb. 13(1), 65 (2006).

    Article  Google Scholar 

  23. Mullen G.L., Panario D.: Handbook of Finite Fields. CRC Press, Boca Raton (2013).

    Book  Google Scholar 

  24. Mullen G.L., Shparlinski I.: Open problems and conjectures in finite fields. In: London Mathematical Society Lecture Note Series, pp. 243–268 (1996).

  25. Rivest R.L.: Permutation polynomials modulo 2w. Finite Fields Appl. 7(2), 287–292 (2001).

    Article  MathSciNet  Google Scholar 

  26. Shparlinski I.E.: A deterministic test for permutation polynomials. Comput. Complex. 2(2), 129–132 (1992).

    Article  MathSciNet  Google Scholar 

  27. Stichtenoth H.: Algebraic function fields and codes, vol. 254. Springer, New York (2009).

    MATH  Google Scholar 

  28. Sun J., Takeshita O.Y.: Interleavers for turbo codes using permutation polynomials over integer rings. IEEE Trans. Inf. Theory 51(1), 101–119 (2005).

    Article  MathSciNet  Google Scholar 

  29. Xu X., Li C., Zeng X., Helleseth T.: Constructions of complete permutation polynomials. Des. Codes Cryptogr. 86(12), 2869–2892 (2018).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Micheli.

Additional information

Communicated by D. Panario.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by the Swiss National Science Foundation Grant Number 168459, and is grateful to the Max Planck Institute for Mathematics in Bonn for its hospitality and financial support. The second author was supported by the Swiss National Science Foundation Grant Number 171248.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraguti, A., Micheli, G. Full classification of permutation rational functions and complete rational functions of degree three over finite fields. Des. Codes Cryptogr. 88, 867–886 (2020). https://doi.org/10.1007/s10623-020-00715-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00715-0

Keywords

Mathematics Subject Classification

Navigation