Skip to main content
Log in

Do non-free LCD codes over finite commutative Frobenius rings exist?

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we clarify some aspects of LCD codes in the literature. We first prove that non-free LCD codes do not exist over finite commutative Frobenius local rings. We then obtain a necessary and sufficient condition for the existence of LCD codes over a finite commutative Frobenius ring. We later show that a free constacyclic code over a finite chain ring is an LCD code if and only if it is reversible, and also provide a necessary and sufficient condition for a constacyclic code to be reversible. We illustrate the minimum Lee distance of LCD codes over some finite commutative chain rings with examples. We found some new optimal cyclic codes over \({\mathbb {Z}}_4\) of different lengths which are LCD codes using computer algebra system MAGMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \({\texttt {lcm}}(\pi (g_1), \pi (g_2))\): the least common multiple of \(\pi (g_1),\pi (g_2)\).

References

  1. Aydin N., Asamov T.: http://www.asamov.com/Z4Codes/CODES/ShowCODESTablePage.aspx.

  2. Boonniyoma K., Jitman S.: Complementary dual subfield linear codes over finite fields. ArXiv:1605.06827 [cs.IT] (2016).

  3. Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. In: Pinto E.R., et al. (eds.) Coding Theory and Applications, vol. 3, pp. 97–105. CIM Series in Mathematical SciencesSpringer, Berlin (2014).

    Chapter  Google Scholar 

  4. Carlet C., Güneri C., Özbudak F., Ozkaya B., Solé P.: On linear complementary pairs of codes. IEEE Trans. Inf. Theory 64(10), 6583–6589 (2018).

    Article  MathSciNet  Google Scholar 

  5. Carlet C., Mesnager S., Tang C.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86(11), 2606–2618 (2018).

    Article  MathSciNet  Google Scholar 

  6. Carlet C., Mesnager S., Tang C., Qi Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory 65, 39–49 (2018).

    Article  MathSciNet  Google Scholar 

  7. Carlet C., Mesnager S., Tang C., Qi Y., Pellikaan R.: Linear codes over \(F_q\) are equivalent to LCD codes for \(q>3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018). (Special Issue in honor of Solomon Golomb).

    Article  Google Scholar 

  8. Dougherty S.T., Liu H.: Independence of vectors in codes over rings. Des. Codes Cryptogr. 51, 55–68 (2009).

    Article  MathSciNet  Google Scholar 

  9. Dougherty S.T., Kim J.L., Ozkaya B., Sok L., Solé P.: The combinatorics of LCD codes: linear programming bound and orthogonal matrices. To appear in Int. J. Inf. Coding Theory (IJICOT).

  10. Dougherty S.T., Yildiz B., Karadeniz S.: Codes over \(R_k\), Gray maps and their binary images. Finite Fields Appl. 17, 205–219 (2011).

    Article  MathSciNet  Google Scholar 

  11. Fan Y., Ling S., Liu H.: Matrix product codes over finite commutative Frobenius rings. Des. Codes Cryptogr. 71, 201–227 (2014).

    Article  MathSciNet  Google Scholar 

  12. Fotue-Tabue A., Martínez-Moro E., Blackford T.: On polycyclic codes over a finite chain ring. Adv. Math. Commun. https://doi.org/10.3934/amc.2020028 (2019).

  13. Gary M.G.: An approach to Hensel’s lemma. Ir. Math. Soc. Bull. 47, 15–21 (2001).

    MathSciNet  MATH  Google Scholar 

  14. Güneri C., Özbudak F., Ozkaya B., Sacikara E., Sepasdar Z., Solé P.: Structure and performance of generalized quasi-cyclic codes. Finite Fields Appl. 47, 183–202 (2017).

    Article  MathSciNet  Google Scholar 

  15. Güneri C., Ozkaya B., Solé P.: Quasi-cyclic complementary dual codes. Finite Fields Appl. 42, 67–80 (2016).

    Article  MathSciNet  Google Scholar 

  16. Jin L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–2847 (2017).

    MathSciNet  MATH  Google Scholar 

  17. Kaplansky I.: Projective modules. Ann. Math. 68, 372–377 (1958).

    Article  MathSciNet  Google Scholar 

  18. Li C., Ding C., Li S.: LCD cyclic codes over finite fields. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017).

    Article  MathSciNet  Google Scholar 

  19. Li S., Li C., Ding C., Liu H.: Two families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017).

    MathSciNet  MATH  Google Scholar 

  20. Liu X., Liu H.: LCD codes over finite chain rings. Finite Fields Appl. 34, 1–19 (2015).

    Article  MathSciNet  Google Scholar 

  21. López-Permouth S.R., Ozadam H., Özbudak F., Szabo S.: Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes. Finite Fields Appl. 19, 16–38 (2013).

    Article  MathSciNet  Google Scholar 

  22. Massey J.L.: Linear codes with complementary duals. Discret. Math. 106(107), 337–342 (1992).

    Article  MathSciNet  Google Scholar 

  23. Massey J.L.: Reversible codes. Inf. Control 7(3), 369–380 (1964).

    Article  MathSciNet  Google Scholar 

  24. McDonald B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974).

    MATH  Google Scholar 

  25. Norton G.H., Salagean A.: On the structure of linear and cyclic codes over finite chain rings. Appl. Algebra Eng. Commun. Comput. 10, 489–506 (2000).

    Article  MathSciNet  Google Scholar 

  26. Sendrier N.: Linear codes with complementary duals meet the Gilbert-Varshamov bound. Discret. Math. 285(1), 345–347 (2004).

    Article  MathSciNet  Google Scholar 

  27. Tzeng K., Hartmann C.: On the minimum distance of certain reversible cyclic codes. IEEE Trans. Inf. Theory 16(5), 644–646 (1970).

    Article  MathSciNet  Google Scholar 

  28. Wieb B., John C., Catherine P.: The Magma algebra system I. The user language, computational algebra and number theory (London, 1993). J. Symb. Comput. 24(3–4), 235–265 (1997).

    MATH  Google Scholar 

  29. Wood J.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121, 555–575 (1999).

    Article  MathSciNet  Google Scholar 

  30. Wu Y., Yue Q.: Factorizations of binomial polynomials and enumerations of LCD and self-dual constacyclic codes. IEEE Trans. Inf. Theory 65(3), 1740–1751 (2019).

    MathSciNet  MATH  Google Scholar 

  31. Yang X., Massey J.L.: The condition for a cyclic code to have a complementary dual. Discret. Math. 126, 391–393 (1994).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author of the paper would like to thank the Ministry of Human Resource and Development India for financial support to carry out this work. The third author is partially funded by the Spanish State Research Agency (AEI) under Grant PGC2018-096446-B-C21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishna Bandi.

Additional information

Communicated by C. Carlet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmick, S., Fotue-Tabue, A., Martínez-Moro, E. et al. Do non-free LCD codes over finite commutative Frobenius rings exist?. Des. Codes Cryptogr. 88, 825–840 (2020). https://doi.org/10.1007/s10623-019-00713-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00713-x

Keywords

Mathematics Subject Classification

Navigation