Small weight code words arising from the incidence of points and hyperplanes in \(\text {PG}(n,q)\)


Let \(C_{n-1}(n,q)\) be the code arising from the incidence of points and hyperplanes in the Desarguesian projective space \(\text {PG}(n,q)\). Recently, Polverino and Zullo (J Comb Theory Ser A 158:1–11, 2018) proved that within this code, all non-zero code words of weight at most \(2q^{n-1}\) are scalar multiples of either the incidence vector of one hyperplane, or the difference of the incidence vectors of two distinct hyperplanes. We prove that all code words of weight at most \(\big (4q-{\mathcal {O}} (\sqrt{q})\big )q^{n-2}\) are linear combinations of incidence vectors of hyperplanes through a common \((n-3)\)-space. This extends previous results for large values of q.

This is a preview of subscription content, access via your institution.


  1. 1.

    Assmus Jr. E.F., Key J.D.: Designs and Their Codes. Cambridge Tracts in Mathematics, vol. 103. Cambridge University Press, Cambridge (1992).

    Book  Google Scholar 

  2. 2.

    Bagchi, B.: On characterizing designs by their codes. In: Buildings, Finite Geometries and Groups, vol. 10 of Springer Proc. Math., pp. 1–14. Springer, New York (2012)

  3. 3.

    Bagchi, B.: The fourth smallest Hamming weight in the code of the projective plane over \({\mathbb{Z}}/p{\mathbb{Z}}\). arXiv e-prints, page arXiv:1712.07391 (2017)

  4. 4.

    Bagchi B., Inamdar S.P.: Projective geometric codes. J. Comb. Theory Ser. A 99(1), 128–142 (2002).

    MathSciNet  Article  Google Scholar 

  5. 5.

    De Boeck, M.: Intersection problems in finite geometries. PhD thesis, Ghent University (2014)

  6. 6.

    Delsarte P., Goethals J.-M., MacWilliams F.J.: On generalized Reed-Muller codes and their relatives. Inf. Control 16, 403–442 (1970).

    MathSciNet  Article  Google Scholar 

  7. 7.

    Lavrauw M., Storme L., Sziklai P., Van de Voorde G.: An empty interval in the spectrum of small weight codewords in the code from points and \(k\)-spaces of \({\rm PG}(n, q)\). J. Comb. Theory Ser. A 116(4), 996–1001 (2009).

    MathSciNet  Article  Google Scholar 

  8. 8.

    Polverino O., Zullo F.: Codes arising from incidence matrices of points and hyperplanes in \({\rm PG}(n, q)\). J. Comb. Theory Ser. A 158, 1–11 (2018).

    MathSciNet  Article  Google Scholar 

  9. 9.

    Szőnyi T., Weiner Zs: Stability of \(k\,{\rm mod}\,p\) multisets and small weight codewords of the code generated by the lines of PG(2, \(q\)). J. Comb. Theory Ser. A 157, 321–333 (2018).

    Article  Google Scholar 

Download references


Special thanks to Maarten De Boeck for revising these results with great care and eye for detail. We would also like to thank the referees for their constructive feedback.

Author information



Corresponding author

Correspondence to Lins Denaux.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article acknowlegde the support of the FWO-HAS project No. VS.069.18N, titled ‘Substructures in finite projective spaces: algebraic and extremal questions’.

Zsuzsa Weiner acknowledges the support of OTKA Grant No. K 124950.

Communicated by D. Ghinelli.

Further details to Lemma 3.2.1

Further details to Lemma 3.2.1

Suppose \(c\in C_{n-1}(n,q)\), with \(q\geqslant 7\), \(q\notin \{8,9,16,25,27,49\}\), and assume that \({\text{ wt }(c)}\leqslant E_{n,q}\), with

$$\begin{aligned} E_{n,q}= & {} {\left\{ \begin{array}{ll} \Big (3q-\sqrt{6q}-\frac{1}{2}\Big )q^{n-2}\;&{}\text{ if } q\in \{7,11,13,17\}\text{, }\\ \Big (3q-\sqrt{6q}+\frac{9}{2}\Big )q^{n-2}\;&{}\text{ if } q\in \{19,121\}\text{, }\\ \Big (4q-\sqrt{8q}-\frac{33}{2}\Big )q^{n-2}\;&{}\text{ otherwise; }\\ \end{array}\right. }\\ A_q= & {} {\left\{ \begin{array}{ll} 3q-3\;&{}\text{ if } q\in \{7,11,13,17\}\text{, }\\ 3q+2\;&{}\text{ if } q\in \{19,121\}\text{, }\\ 4q-21\;&{}\text{ otherwise. }\\ \end{array}\right. } \end{aligned}$$

Remark that \(B_{n,q}<E_{n,q}\) if \(q\in \{29,31,32\}\) and \(B_{n,q}=E_{n,q}\) for all other considered values of q, so it suffices to check the details of the lemma for this bound \(E_{n,q}\). We will derive a contradiction using the following two inequalities:

$$\begin{aligned} {\text{ wt }(c)}\geqslant \bigg (\frac{1}{2}j(j+1)-j\bigg )\theta _{n-2}+j\qquad \text{ and }\qquad j\geqslant \frac{A_q\theta _{n-2}-{\text{ wt }(c)}}{\theta _{n-2}-1}\text{. } \end{aligned}$$

Define \(\varvec{W}:={\text{ wt }(c)}\). Below, we will sketch the details when \(q>19\), and \(q \not = 121\). The other two cases are completely analogous.

Combining the two equations in (6), together with \(A_q=4q-21\), gives rise to the following inequality:

$$\begin{aligned} 0\geqslant (&q^{n+1}-2q^n+q^{n-1}-q^2+2q-1)\varvec{W}^2\\ -&(8q^{2n}-49q^{2n-1}+41q^{2n-2}-17q^{n+1}+100q^n-83q^{n-1}+9q^2-51q+42)\varvec{W}\\ +&16q^{3n-1}-172q^{3n-2}+462q^{3n-3}-36q^{2n}+441q^{2n-1}-1323q^{2n-2}\\ -&8q^{n+2}+82q^{n+1}-458q^n+1302q^{n-1}+8q^3-62q^2+189q-441\text{. } \end{aligned}$$

The above inequality is of the form \(0\geqslant a\varvec{W}^2+b\varvec{W}+c\), with \(a\geqslant 0\), implying that \(\varvec{W}\geqslant \frac{-b- \sqrt{D}}{2a}\) with \(D=b^2-4ac\). One can check that

$$\begin{aligned} D&=32q^{4n-1}-231q^{4n-2}+366q^{4n-3}-167q^{4n-4}\\&\quad -64q^{3n+1}+398q^{3n}-270q^{3n-1}-398q^{3n-2}+334q^{3n-3}\\&\quad +32q^{2n+3}-103q^{2n+2}-526q^{2n+1}+1066q^{2n}-302q^{2n-1}-167q^{2n-2}\\&\quad -64q^{n+4}+398q^{n+3}-270q^{n+2}-398q^{n+1}+334q^n\\&\quad +32q^5-231q^4+366q^3-167q^2\text{. } \end{aligned}$$

Since \(q\geqslant 23\), we can find the following upper bound on the right-hand side:

$$\begin{aligned} D\leqslant 32q^{4n-1}-231q^{4n-2}+398q^{4n-3}-46q^{3n+1}\text{. } \end{aligned}$$

On the other hand, we have that \(D\geqslant \big (-b-2a(4q-\sqrt{8q}-\frac{33}{2})\big )^2\), which implies

$$\begin{aligned} D&\geqslant 32q^{4n-1}-128q^{4n-2}-264\sqrt{2q}\cdot q^{4n-3}+192q^{4n-3}+792\sqrt{2q}\cdot q^{4n-4}+961q^{4n-4}\\&\quad -792\sqrt{2q}\cdot q^{4n-5}-2146q^{4n-5}+264\sqrt{2q}\cdot q^{4n-6}+1089q^{4n-6}\\&\quad -72\sqrt{2q}\cdot q^{3n}-64q^{3n}+552\sqrt{2q}\cdot q^{3n-1}+850q^{3n-1}-696\sqrt{2q}\cdot q^{3n-2}\\&\quad -4344q^{3n-2}-504\sqrt{2q}\cdot q^{3n-3}+4216q^{3n-3}+1248\sqrt{2q}\cdot q^{3n-4}+1520q^{3n-4}\\&\quad -528\sqrt{2q}\cdot q^{3n-5}-2178q^{3n-5}+81q^{2n+2}+144\sqrt{2q}\cdot q^{2n+1}-886q^{2n+1}\\&\quad -1104\sqrt{2q}\cdot q^{2n}+2041q^{2n}+2184\sqrt{2q}\cdot q^{2n-1}+3828q^{2n-1}-1368\sqrt{2q}\cdot q^{2n-2}\\&\quad -9551q^{2n-2}-120\sqrt{2q}\cdot q^{2n-3}+3398q^{2n-3}+264\sqrt{2q}\cdot q^{2n-4}+1089q^{2n-4}\\&\quad -162q^{n+3}-72\sqrt{2q}\cdot q^{n+2}+1836q^{n+2}+552\sqrt{2q}\cdot q^{n+1}-6120q^{n+1}\\&\quad -1224\sqrt{2q}\cdot q^n+4608q^n+1080\sqrt{2q}\cdot q^{n-1}+2610q^{n-1}-336\sqrt{2q}\cdot q^{n-2}\\&\quad -2772q^{n-2}+81q^4-918q^3+3357q^2-4284q+1764\text{. } \end{aligned}$$

Since \(q\geqslant 23\), we can find the following lower bound on the right-hand side:

$$\begin{aligned} D\geqslant 32q^{4n-1}-206q^{4n-2}-72\sqrt{2q}\cdot q^{3n}-64q^{3n}\text{. } \end{aligned}$$

Combining (7) and (8) yields

$$\begin{aligned}&32q^{4n-1}-231q^{4n-2}+398q^{4n-3}-46q^{3n+1}\geqslant D\geqslant 32q^{4n-1}-206q^{4n-2}\\&\quad -72\sqrt{2q}\cdot q^{3n}-64q^{3n}\text{, } \end{aligned}$$

resulting in

$$\begin{aligned}&0\geqslant 25q^{4n-2}-398q^{4n-3}+46q^{3n+1}-72\sqrt{2q}\cdot q^{3n}-64q^{3n}\\ \Longrightarrow \quad&0\geqslant 25q^{4n-2}-398q^{4n-3}\\ \Longrightarrow \quad&\frac{398}{25}\geqslant q\text{, } \end{aligned}$$

a contradiction.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adriaensen, S., Denaux, L., Storme, L. et al. Small weight code words arising from the incidence of points and hyperplanes in \(\text {PG}(n,q)\). Des. Codes Cryptogr. 88, 771–788 (2020).

Download citation


  • Finite projective geometry
  • Coding Theory
  • Small weight code words

Mathematics Subject Classification

  • 05B25
  • 94B05