Skip to main content
Log in

A class of narrow-sense BCH codes over \(\mathbb {F}_q\) of length \(\frac{q^m-1}{2}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

BCH codes with efficient encoding and decoding algorithms have many applications in communications, cryptography and combinatorial design. This paper studies a class of linear codes of length \( \frac{q^m-1}{2}\) over \(\mathbb {F}_q\) with special trace representation, where q is an odd prime power. With the help of the inner distributions of some subsets of association schemes of quadratic forms, we determine the weight enumerators of these codes. Determining some cyclotomic coset leaders \(\delta _i\) of cyclotomic cosets modulo \( \frac{q^m-1}{2}\), we prove that narrow-sense BCH codes of length \( \frac{q^m-1}{2}\) with designed distance \(\delta _i=\frac{q^m-q^{m-1}}{2}-1-\frac{q^{ \lfloor \frac{m-3}{2} \rfloor +i}-1}{2}\) have the corresponding trace representation, and have the minimal distance \(d=\delta _i\) and the Bose distance \(d_B=\delta _i\), where \(1\le i\le \lfloor \frac{m+11}{6} \rfloor \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly S.A., Klappenecker A., Sarvepalli P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007).

    MathSciNet  MATH  Google Scholar 

  2. Berlekamp E.R.: The weight enumerators for certain subcodes of the second order binary Reed–Muller codes. Inform. Control 17(5), 485–500 (1970).

    MathSciNet  MATH  Google Scholar 

  3. Bose R.C., Ray-Chaudhuri D.K.: On a class of error correcting binary group codes. Inform. Control 3(1), 68–79 (1960).

    MathSciNet  MATH  Google Scholar 

  4. Charpin P.: On a class of primitive BCH codes. IEEE Trans. Inf. Theory 36(1), 222–228 (1990).

    MathSciNet  MATH  Google Scholar 

  5. Charpin P.: Open problems on cyclic codes. In: Pless V.S., et al. (eds.) Handbook of Coding Theory, pp. 963–1063. Elsevier, Amsterdam (1998).

    Google Scholar 

  6. Charpin P., Helleseth T., Zinoviev V.A.: The coset distribution of triple-error-correcting binary primitive BCH codes. IEEE Trans. Inf. Theory 52(4), 1727–1732 (2006).

    MathSciNet  MATH  Google Scholar 

  7. Ding C.: Parameters of several classes of BCH codes. IEEE Trans. Inf. Theory 61(10), 5322–5330 (2015).

    MathSciNet  MATH  Google Scholar 

  8. Ding C.: Designs from Linear Codes. World Scientific, Singapore (2018).

    Google Scholar 

  9. Ding C., Du X., Zhou Z.: The Bose and minimum distance of a class of BCH codes. IEEE Trans. Inf. Theory 61(5), 2351–2356 (2015).

    MathSciNet  MATH  Google Scholar 

  10. Ding C., Fan C., Zhou Z.: The dimension and minimum distance of two classes of primitive BCH codes. Finite Fields Appl. 45, 237–263 (2017).

    MathSciNet  MATH  Google Scholar 

  11. Delsarte P.: On subfield subcodes of modified Reed–Solomon codes (Corresp.). IEEE Trans. Inf. Theory 21(5), 575–576 (1975).

    MATH  Google Scholar 

  12. Desaki Y., Fujiwara T., Kasami T.: The weight distributions of extended binary primitive BCH codes of length 128. IEEE Trans. Inf. Theory 43(4), 1364–1371 (1997).

    MathSciNet  MATH  Google Scholar 

  13. Feng K., Luo J.: Weight distribution of some reducible cyclic codes. Finite Fields Appl. 14(2), 390–409 (2008).

    MathSciNet  MATH  Google Scholar 

  14. Fujiwara T., Takata T., Kasami T., Lin S.: An approximation to the weight distribution of binary primitive BCH codes with designed distances 9 and 11 (Corresp.). IEEE Trans. Inf. Theory 32(5), 706–709 (1986).

    MATH  Google Scholar 

  15. Gorenstein D.C., Zierler N.: A class of error-correcting codes in \(p^m\) symbols. J. SIAM 9(2), 207–214 (1961).

    MATH  Google Scholar 

  16. Helgert H., Stinaff R.: Shortened BCH codes (Corresp.). IEEE Trans. Inf. Theory 19(6), 818–820 (1973).

    MATH  Google Scholar 

  17. Hocquenghem A.: Codes correcteurs d’erreurs. Chiffres 2(2), 147–156 (1959).

    MathSciNet  MATH  Google Scholar 

  18. Huo Y.J., Wan Z.X.: Nonsymmetric association schemes of symmetric matrices. Acta Math. Appl. Sinica 9(3), 236–255 (1993).

    MathSciNet  MATH  Google Scholar 

  19. Kasami T.: Weight distributions of Bose–Chaudhuri–Hocquenghem codes. In: Bose R.C., Dowlings T.A. (eds.) Combinatorial Mathematics and Applications. University of North Carolina Press, Chapel Hill, NC (1969). Ch.20.

    Google Scholar 

  20. Kasami T., Lin S.: Some results on the minimum weight of primitive BCH codes. IEEE Trans. Inf. Theory 18(6), 824–825 (1972).

    MathSciNet  MATH  Google Scholar 

  21. Kasami T., Tokura N.: Some remarks on BCH bounds and minimum weights of binary primitive BCH codes. IEEE Trans. Inf. Theory 15(3), 408–413 (1969).

    MathSciNet  MATH  Google Scholar 

  22. Kasami T., Lin S., Peterson W.W.: Linear codes which are invariant under the affine group and some results on minimum weights in BCH codes. Electron. Commun. Jpn. 50(9), 100–106 (1967).

    MathSciNet  Google Scholar 

  23. Keren O., Litsyn S.: More on the distance distribution of BCH codes. IEEE Trans. Inf. Theory 45(1), 251–255 (1999).

    MathSciNet  MATH  Google Scholar 

  24. Krasikov I., Litsyn S.: On the distance distributions of BCH codes and their duals. Des. Codes Cryptogr. 23(2), 223–232 (2001).

    MathSciNet  MATH  Google Scholar 

  25. Li S.: The minimum distance of some narrow-sense primitive BCH codes. SIAM J. Discret. Math. 31(4), 2530–2569 (2017).

    MathSciNet  MATH  Google Scholar 

  26. Li C., Ding C., Li S.: LCD cyclic codes over finite fields. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017).

    MathSciNet  MATH  Google Scholar 

  27. Li S., Ding C., Xiong M., Ge G.: Narrow-Sense BCH codes over \(GF(q)\) with length \(n=\frac{q^m-1}{q-1}\). IEEE Trans. Inf. Theory 63(11), 7219–7236 (2017).

    MATH  Google Scholar 

  28. Li S., Li C., Ding C., Liu H.: Two Families of LCD BCH Codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017).

    MathSciNet  MATH  Google Scholar 

  29. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  30. Liu H., Ding C., Li C.: Dimensions of three types of BCH codes over \(GF(q)\). Discret. Math. 240(8), 1910–1927 (2017).

    MathSciNet  MATH  Google Scholar 

  31. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland Pub. Co, Amsterdam (1977).

    MATH  Google Scholar 

  32. Mandelbaum D.: Two applications of cyclotomic cosets to certain BCH codes. IEEE Trans. Inf. Theory 26(6), 737–738 (1980).

    MathSciNet  MATH  Google Scholar 

  33. Mann H.B.: On the number of information symbols in Bose–Chaudhuri codes. Inf. Control 5(2), 153–162 (1962).

    MathSciNet  MATH  Google Scholar 

  34. Peterson W.W.: Some new results on finite fields and their application to the theory of BCH codes. In: Proceedings of the International Conference on Combinatorial Mathematics and its Applications, University of North Carolina, Chapel Hill, NC, 1967, pp. 329–334. University of North Carolina Press, Chapel Hill, NC (1969)

  35. Schmidt K.-U.: Symmetric bilinear forms over finite fields with applications to coding theory. J. Algebra. Combin. 42(2), 635–670 (2015).

    MathSciNet  MATH  Google Scholar 

  36. Schmidt K.-U.: Quadratic and symmetric bilinear forms over finite fields and their association schemes. arXiv:1803.04274

  37. Tang C., Ding C., Xiong M.: Steiner systems \(S(2, 4, \frac{3^m-1}{2})\) and \(2\)-designs from ternary linear codes of length \(\frac{3^m-1}{2}\). Des. Codes Cryptogr. (2019). https://doi.org/10.1007/s10623-019-00651-8.

    Article  MATH  Google Scholar 

  38. Wang Y., Wang C., Ma C., Ma J.: Association schemes of quadratic forms and symmetric bilinear forms. J. Algebra. Comb. 17(2), 149–161 (2003).

    MathSciNet  MATH  Google Scholar 

  39. Wolf J.K.: Adding two information symbols to certain nonbinary BCH codes and some applications. Bell Labs Tech. J. 48(7), 2405–2424 (1969).

    MathSciNet  MATH  Google Scholar 

  40. Yan H.: A class of primitive BCH codes and their weight distribution. AAECC 29(1), 1–11 (2018).

    MathSciNet  MATH  Google Scholar 

  41. Yue D., Feng G.: Minimum cyclotomic coset representatives and their applications to BCH codes and Goppa codes. IEEE Trans. Inf. Theory 46(7), 2625–2628 (2000).

    MathSciNet  MATH  Google Scholar 

  42. Yue D., Hu Z.: On the dimension and minimum distance of BCH codes over \(GF(q)\). J. Electron. 13(3), 216–221 (1996).

    Google Scholar 

  43. Zhou Z., Ding C.: A class of three-weight cyclic codes. Finite Fields Appl. 25, 79–93 (2014).

    MathSciNet  MATH  Google Scholar 

  44. Zhu S., Sun Z., Kai X.: A class of narrow-sense BCH codes. IEEE Trans. Inf. Theory 65(8), 4699–4714 (2019).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by SECODE project and the National Natural Science Foundation of China (Grant Nos. 11871058, 11531002, 11701129). C. Tang also acknowledges support from 14E013, CXTD2014-4 and the Meritocracy Research Funds of China West Normal University. Y. Qi also acknowledges support from Zhejiang provincial Natural Science Foundation of China (LQ17A010008, LQ16A010005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Tang.

Additional information

Communicated by Q. Xiang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, X., Mesnager, S., Qi, Y. et al. A class of narrow-sense BCH codes over \(\mathbb {F}_q\) of length \(\frac{q^m-1}{2}\). Des. Codes Cryptogr. 88, 413–427 (2020). https://doi.org/10.1007/s10623-019-00691-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00691-0

Keywords

Mathematics Subject Classification

Navigation