Skip to main content
Log in

Steiner systems \(S(2, 4, \frac{3^m-1}{2})\) and 2-designs from ternary linear codes of length \(\frac{3^m-1}{2}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Coding theory and t-designs have close connections and interesting interplay. In this paper, we first introduce a class of ternary linear codes and study their parameters. We then focus on their three-weight subcodes with a special weight distribution. We determine the weight distributions of some shortened codes and punctured codes of these three-weight subcodes. These shortened and punctured codes contain some codes that have the same parameters as the best ternary linear codes known in the database maintained by Markus Grassl at http://www.codetables.de/. These three-weight subcodes with a special weight distribution do not satisfy the conditions of the Assmus–Mattson theorem and do not admit 2-transitive or 2-homogeneous automorphism groups in general. By employing the theory of projective geometries and projective generalized Reed–Muller codes, we prove that they still hold 2-designs. We also determine the parameters of these 2-designs. This paper mainly confirms some recent conjectures of Ding and Li regarding Steiner systems and 2-designs from a special type of ternary projective codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson R., Ding C., Helleseth T., Klove T.: How to build robust shared control systems. Des. Codes Cryptogr. 15, 111–124 (1998).

    Article  MathSciNet  Google Scholar 

  2. Assmus Jr. E.F.: On \(2\)-ranks of Steiner triple systems. Electron. J. Comb. 2(1), 9 (1995).

    MathSciNet  MATH  Google Scholar 

  3. Assmus Jr. E.F., Key J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992).

    Book  Google Scholar 

  4. Assmus Jr. E.F., Key J.D.: Polynomial codes and finite geometries. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1269–1343. Elsevier, Amsterdam (1998).

    Google Scholar 

  5. Assmus Jr. E.F., Mattson Jr. H.F.: Coding and combinatorics. SIAM Rev. 16, 349–388 (1974).

    Article  MathSciNet  Google Scholar 

  6. Ding C.: Codes from Difference Sets. World Scientific, Singapore (2015).

    Google Scholar 

  7. Ding C.: Infinite families of 3-designs from a type of five-weight code. Des. Codes Cryptogr. 86, 703–719 (2018).

    Article  MathSciNet  Google Scholar 

  8. Ding C.: An infinite family of Steiner systems from cyclic codes. J. Comb. Des. 26, 127–144 (2018).

    Article  MathSciNet  Google Scholar 

  9. Ding C.: Designs from Linear Codes. World Scientific, Singapore (2018).

    Book  Google Scholar 

  10. Ding C., Li C.: Infinite families of 2-designs and 3-designs from linear codes. Discret. Math. 340, 2415–2431 (2017).

    Article  MathSciNet  Google Scholar 

  11. Ding C., Li C., Xia Y.: Another generalization of the binary Reed–Muller codes and its applications. Finite Fields Appl. 53, 144–174 (2018).

    Article  MathSciNet  Google Scholar 

  12. Ding C., Munemasa A., Tonchev V.D.: Bent vectorial functions, codes and designs (2018). arXiv:1808.08487 [math.CO].

  13. Hamada N.: On the \(p\)-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes. Hiroshima Math. J. 3, 153–226 (1973).

    Article  MathSciNet  Google Scholar 

  14. Hanani H.: Balanced incomplete block designs and related designs. Discret. Math. 11, 255–369 (1975).

    Article  MathSciNet  Google Scholar 

  15. Harada M., Kitazume M., Munemasa A.: On a \(5\)-design related to an extremal doubly-even self-dual code of length \(72\). J. Comb. Theory Ser. A 107, 143–146 (2004).

    Article  MathSciNet  Google Scholar 

  16. Harada M., Munemasa A., Tonchev V.D.: A characterization of designs related to an extremal doubly-even self-dual code of length \(48\). Ann. Comb. 9, 189–198 (2005).

    Article  MathSciNet  Google Scholar 

  17. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  18. Jungnickel D., Tonchev V.D.: On Bonisoli’s theorem and the block codes of Steiner triple systems. Des. Codes Cryptogr. 86, 449–462 (2018).

    Article  MathSciNet  Google Scholar 

  19. Jungnickel D., Tonchev V.D.: Counting Steiner triple systems with classical parameters and prescribed rank. J. Comb. Theory Ser. A 162, 10–33 (2019).

    Article  MathSciNet  Google Scholar 

  20. Jungnickel D., Magliveras S.S., Tonchev V.D., Wassermann A.: On classifying Steiner triple systems by their \(3\)-rank. In: Bl”omer J. et al. (eds.), MACIS 2017, LNCS 10693, pp. 295–305 (2017). Springer, Berlin

  21. Koolen J.H., Munemasa A.: Tight 2-designs and perfect \(1\)-codes in Doob graphs. J. Stat. Plann. Inference 86, 505–513 (2000).

    Article  MathSciNet  Google Scholar 

  22. Li S., Ding C., Xiong M., Ge G.: Narrow-sense BCH codes over \({\rm GF}(q)\) with length \( n=\frac{q^{m}-1}{q-1}\). IEEE Trans. Inf. Theory 63, 7219–7236 (2017).

    Article  Google Scholar 

  23. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  24. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

    MATH  Google Scholar 

  25. Munemasa A., Tonchev V.D.: A new quasi-symmetric \(2\)-\((56,16,6)\) design obtained from codes. Discret. Math. 29, 231–234 (2004).

    Article  MathSciNet  Google Scholar 

  26. Tonchev V.D.: Codes and designs. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1229–1268. Elsevier, Amsterdam (1998).

    Google Scholar 

  27. Tonchev V.D.: Linear perfect codes and a characterization of the classical designs. Des. Codes Cryptogr. 17, 121–128 (1999).

    Article  MathSciNet  Google Scholar 

  28. Tonchev V.D.: Codes. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 677–701. CRC Press, New York (2007).

    Google Scholar 

  29. Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52, 206–212 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers and the editors for their comments and suggestions that improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Tang.

Additional information

Communicated by V. D. Tonchev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of C. Tang was supported by National Natural Science Foundation of China (Grant No. 11871058) and China West Normal University (14E013, CXTD2014-4 and the Meritocracy Research Funds). The research of C. Ding was supported by The Hong Kong Research Grants Council, Project No. 16300418. The research of M. Xiong was supported by The Hong Kong Research Grants Council, Project No. NHKUST619/17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Ding, C. & Xiong, M. Steiner systems \(S(2, 4, \frac{3^m-1}{2})\) and 2-designs from ternary linear codes of length \(\frac{3^m-1}{2}\). Des. Codes Cryptogr. 87, 2793–2811 (2019). https://doi.org/10.1007/s10623-019-00651-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00651-8

Keywords

Mathematics Subject Classification

Navigation