Skip to main content
Log in

Partial geometric designs from group actions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, using group actions, we introduce a new method for constructing partial geometric designs (sometimes referred to as \(1\frac{1}{2}\)-designs). Using this new method, we construct several infinite families of partial geometric designs by investigating the actions of various linear groups of degree two on certain subsets of \({\mathbb {F}}_{q}^{2}\). Moreover, by computing the stabilizers of such subsets in various linear groups of degree two, we are also able to construct a new infinite family of balanced incomplete block designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assmus E.F., Key J.D.: Designs and Their Codes, vol. 103. Cambridge University Press, Cambridge (1992).

    Book  Google Scholar 

  2. Beth T., Jungnickel D., Lenz H.: Design Theory, vol. I, 2nd edn. Cambridge University Press, Cambridge (1999).

    Book  Google Scholar 

  3. Bose R.C.: A note on Fisher’s inequality for balanced incomplete block designs. Ann. Math. Stat. 1, 619–620 (1949).

    Article  MathSciNet  Google Scholar 

  4. Bose R.C., Shrikhand S.S., Singhi N.M.: Edge regular multigraphs and partial geometric designs with an application to the embedding of quasi-residual designs. Colloq. Int. Teor. Comb. 1, 49–81 (1976).

    MathSciNet  Google Scholar 

  5. Brouwer A.E., Olmez O., Song S.Y.: Directed strongly regular graphs from \(1\frac{1}{2}\)-designs. Eur. J. Comb. 33(6), 1174–1177 (2012).

    Article  Google Scholar 

  6. Cameron P.J.: Research problems from the 19th british combinatorial conference. Discret. Math. 293(1), 111–126 (2017).

    MathSciNet  Google Scholar 

  7. Cameron P.J., Maimani H.R., Omidi G.R., Tayfeh-Rezaie B.: 3-Designs from PSL\((2, q)\). Discret. Math. 306, 3063–3073 (2006).

    Article  MathSciNet  Google Scholar 

  8. Chang Y., Cheng F., Zhou J.: Partial geometric difference sets and partial geometric difference families. Discret. Math. 341(9), 2490–2498 (2018).

    Article  MathSciNet  Google Scholar 

  9. Cusick T.W., Ding C., Renvall A.: Stream Ciphers and Number, vol. 55. Theory North-Holland Mathematical LibraryNorth-Holland Publishing Co., Amsterdam (1998).

    MATH  Google Scholar 

  10. Davis J., Olmez O.: A framework for constructing partial geometric difference sets. Des. Codes Cryptogr. 86(6), 1367–1375 (2018).

    Article  MathSciNet  Google Scholar 

  11. Dembowski P.: Finite Geometries. Springer, New York (1968).

    Book  Google Scholar 

  12. Ding C.: Codes from Difference Sets. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2015).

    Google Scholar 

  13. Fernandez-Alcobar G.A., Kwashira R., Martinez L.: Cyclotomy over products of finite fields and combinatorial applications. Eur. J. Comb. 31, 1520–1538 (2010).

    Article  MathSciNet  Google Scholar 

  14. Fisher R.A.: An examination of the different possible solutions of a problem in incomplete blocks. Ann. Eugen. 10, 52–75 (1940).

    Article  MathSciNet  Google Scholar 

  15. Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005).

    Book  Google Scholar 

  16. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford University Press, Oxford (1998).

    MATH  Google Scholar 

  17. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  18. Liu H., Ding C.: Infinite families of 2-designs from \({GA}_{1}(q)\) actions (2017). arXiv:1707.02003v1.

  19. Liu W.J., Tang J.X., Wu Y.X.: Some new 3-designs from PSL\((2, q)\) with \(q\equiv 1 ({\rm mod} 4)\). Sci. China Math. 55(9), 1520–1538 (2012).

    Article  Google Scholar 

  20. Michel J.: New partial geometric difference sets and partial geometric difference families. Acta Math. Sin. 33(5), 591–606 (2017).

    Article  MathSciNet  Google Scholar 

  21. Moorhouse E.: Incidence Geometry. University of Wyoming, Laramie (2007).

    Google Scholar 

  22. Neumaier A.: \(t\frac{1}{2}\)-designs. J. Comb. Theory A 78, 226–248 (1980).

    Article  Google Scholar 

  23. Nowak K., Olmez O.: Partial geometric designs with prescribed automorphisms. Des. Codes Cryptogr. 80(3), 435–451 (2016).

    Article  MathSciNet  Google Scholar 

  24. Nowak K., Olmez O., Song S.Y.: Partial geometric difference families. J. Comb. Des. 24(3), 1–20 (2014).

    MathSciNet  MATH  Google Scholar 

  25. Nowak K., Olmez O., Song S.Y.: Links between orthogonal arrays, association schemes and partial geometric designs (2015). arXiv:1501.01684v1.

  26. Ogata W., Kurosawa K., Stinson D.R., Saido H.: New combinatorial designs and their applications to authentication codes and secret sharing schemes. Discret. Math. 279, 384–405 (2004).

    Article  MathSciNet  Google Scholar 

  27. Olmez O.: Symmetric \(1\frac{1}{2}\)-deisgns and \(1\frac{1}{2}\)-difference sets. J. Comb. Des. 22(6), 252–268 (2013).

    Article  MathSciNet  Google Scholar 

  28. Olmez O.: Plateaued functions and one-and-half difference sets. Des. Codes Cryptogr. 76(3), 1–13 (2014).

    MathSciNet  Google Scholar 

  29. Olmez O.: A link between combinatorial designs and three-weight linear codes. Des. Codes Cryptogr. 86(9), 1–17 (2017).

    MathSciNet  Google Scholar 

  30. Stinson D.R.: Combinatorial Designs: Constructions and Analysis. Springer, New York (2003).

    MATH  Google Scholar 

  31. Storer T.: Cyclotomy and Difference Sets. Markham, Chicago (1967).

    MATH  Google Scholar 

  32. Van Dam E.R., Spence E.: Combinatorial designs with two singular values II: partial geometric designs. Linear Algebra Appl. 396, 303–316 (2005).

    Article  MathSciNet  Google Scholar 

  33. Wilson R.M.: Cyclotomy and difference families in elementary abelian groups. J. Number Theory 4, 17–47 (1972).

    Article  MathSciNet  Google Scholar 

  34. Zhang Y., Lei J.G., Zhang S.P.: A new family of almost difference sets and some necessary conditions. IEEE Trans. Inf. Theory 52(5), 2052–2061 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the two anonymous reviewers for all of their detailed comments that greatly improved the quality and the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerod Michel.

Additional information

Communicated by Q. Xiang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were supported by the National Science Foundation of China under Grant No. 61672015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, J., Wang, Q. Partial geometric designs from group actions. Des. Codes Cryptogr. 87, 2655–2670 (2019). https://doi.org/10.1007/s10623-019-00644-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00644-7

Keywords

Mathematics Subject Classification

Navigation