Advertisement

A general private information retrieval scheme for MDS coded databases with colluding servers

  • Yiwei Zhang
  • Gennian GeEmail author
Article
  • 11 Downloads

Abstract

The problem of private information retrieval (PIR) gets renewed attentions in recent years due to its information-theoretic reformulation and applications in distributed storage systems. Let M files be stored in a distributed storage system consisting of N servers, where each file is stored via an (NK)-MDS code. A PIR scheme will allow a user to retrieve a specific file from the distributed storage system without revealing the identity of the file to any T colluding servers. PIR rate is defined as the number of symbols privately retrieved per one downloaded symbol and the supremum of all achievable rates is called the PIR capacity. The capacity has been solved for some degenerate cases, i.e. \(K=1\) or \(T=1\). For the general case \(K\ge 2\) and \(T\ge 2\), the exact PIR capacity remains unknown. In this paper we propose a general private information retrieval scheme for MDS coded databases with colluding servers achieving PIR rate \((1+R+R^2+\cdots +R^{M-1})\), where \(R=1-\frac{{{N-T}\atopwithdelims ()K}}{{N\atopwithdelims ()K}}\). Our scheme captures the essence of the optimal schemes for degenerate cases. We also compare our scheme with some other known PIR schemes for non-degenerate cases. The advantages of our scheme include its independence of the property of the storage code and a better performance when the number of files M is small.

Keywords

Private information retrieval Distributed storage system PIR capacity 

Mathematics Subject Classification

94A15 

Notes

Acknowledgements

The authors express their gratitude to the two anonymous reviewers for their detailed and constructive comments which are very helpful to the improvement of the presentation of this paper, and to Prof. Tuvi Etzion, the associate editor, for his excellent editorial job.

References

  1. 1.
    Asi H., Yaakobi E.: Nearly optimal constructions of PIR and batch codes. IEEE Trans. Inform. Theory 65(2), 947–964 (2019).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Augot D., Levy-dit-Vehel F., Shikfa A.: A storage-efficient and robust Private Information Retrieval Scheme allowing few servers. In: Proceedings of Cryptology and Network Security (CANS), pp. 222–239 (2014).Google Scholar
  3. 3.
    Banawan K., Ulukus S.: The capacity of private information retrieval from coded databases. IEEE Trans. Inform. Theory 64(3), 1945–1956 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beimel A., Ishai Y., Kushilevitz E., Raymond J.-F.: Breaking the \(O(n^{1/(2k-1)})\) barrier for information-theoretic private information retrieval. In: Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), pp. 261–270 (2002).Google Scholar
  5. 5.
    Blackburn S., Etzion T.: PIR array codes with optimal virtual server rate. arXiv preprint arXiv:1607.00235v6 (2016).
  6. 6.
    Blackburn S., Etzion T., Paterson M.: PIR schemes with small download complexity and low storage requirements. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 146–150. arXiv:1609.07027 (2017).
  7. 7.
    Chan T., Ho S., Yamamoto H.: Private information retrieval for coded storage. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 2842–2846 (2015).Google Scholar
  8. 8.
    Chor B., Goldreich O., Kushilevitz E., Sudan M.: Private information retrieval. In: Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), pp. 41–50 (1995).Google Scholar
  9. 9.
    Chor B., Kushilevitz E., Goldreich O., Sudan M.: Private information retrieval. J. ACM 45(6), 965–981 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dvir Z., Gopi S.: 2-server PIR with sub-polynomial communication. J. ACM 63(4), article 39 (2016).Google Scholar
  11. 11.
    Efremenko K.: 3-Query locally decodable codes of subexponential length. SIAM J. Comput. 41(6), 1694–1703 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fazeli A., Vardy A., Yaakobi E.: Codes for distributed PIR with low storage overhead. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 2852–2856 (2015).Google Scholar
  13. 13.
    Fazeli A., Vardy A., Yaakobi E.: PIR with low storage overhead: coding instead of replication. arXiv preprint arXiv:1505.06241 (2015).
  14. 14.
    Freij-Hollanti R., Gnilke O., Hollanti C., Karpuk D.: Private information retrieval from coded databases with colluding servers. SIAM J. Appl. Algebra Geom. 1(1), 647–664 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rao S., Vardy A.: Lower bound on the redundancy of PIR codes. arXiv preprint arXiv:1605.01869 (2016).
  16. 16.
    Shah N.B., Rashmi K.V., Ramchandran K.: One extra bit of download ensures perfectly private information retrieval. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 856–860 (2014).Google Scholar
  17. 17.
    Sun H., Jafar S.: The capacity of private information retrieval. IEEE Trans. Inform. Theory 63(7), 4075–4088 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sun H., Jafar S.: Private information retrieval from MDS coded data with colluding servers: settling a conjecture by Freij-Hollanti, et al. IEEE Trans. Inform. Theory 64(2), 1000–1022 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sun H., Jafar S.: The capacity of robust private information retrieval with colluding databases. IEEE Trans. Inform. Theory 64(4), 2361–2370 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tajeddine R., Rouayheb S.E.: Private information retrieval from MDS coded data in distributed storage systems. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 1411–1415 (2016).Google Scholar
  21. 21.
    Tajeddine R., Gnilke O., Rouayheb S.E.: Private information retrieval from MDS coded data in distributed storage systems. IEEE Trans. Inform. Theory 64(11), 7081–7093 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Vajha M., Ramkumar V., Kumar P.V.: Binary, shortened projective Reed Muller codes for coded private information retrieval. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 2648–2652. arXiv:1702.05074 (2017).
  23. 23.
    Yekhanin S.: Towards 3-query locally decodable codes of subexponential length. J. ACM 55(1), article 1 (2008).Google Scholar
  24. 24.
    Yekhanin S.: Private information retrieval. Commun. ACM 53(4), 68–73 (2010).CrossRefzbMATHGoogle Scholar
  25. 25.
    Zhang Y., Wang X., Wei H., Ge G.: On private information retrieval array codes. arXiv preprint arXiv:1609.09167 (2016).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesCapital Normal UniversityBeijingChina

Personalised recommendations