Skip to main content
Log in

Linear complexity of generalized cyclotomic sequences of period \(2p^{m}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we construct two generalized cyclotomic binary sequences of period \(2p^{m}\) based on the generalized cyclotomy and compute their linear complexity, showing that they are of high linear complexity when \(m\ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai E., Liu X., Xiao G.: Linear complexity of new generalized cyclotomic sequences of order two of length $pq$. IEEE Trans. Inf. Theory 51(5), 1849–1853 (2005).

    Article  MathSciNet  Google Scholar 

  2. Chang Z., Li D.: On the linear complexity of generalized cyclotomic binary sequence of length $2pq$. Concurr. Comput. Pract. Exp. 26(8), 1520–1530 (2014).

    Article  Google Scholar 

  3. Cusick T., Ding C., Renvall A.: Stream Ciphers and Number Theory. North-Holland Mathematical Library, vol. 55, pp. 198–212. Elsevier, Amsterdam (1998).

    MATH  Google Scholar 

  4. Ding C.: Binary cyclotomic generators. Fast Software Encryption. LNCS, vol. 1008, pp. 29–60. Springer, Leuven (1995).

    Chapter  Google Scholar 

  5. Ding C.: Linear complexity of generalized cyclotomic binary sequences of order $2$. Finite Fields Appl. 3, 159–174 (1997).

    Article  MathSciNet  Google Scholar 

  6. Ding C., Helleseth T.: New generalized cyclotomy and its applications. Finite Fields Appl. 4, 140–166 (1998).

    Article  MathSciNet  Google Scholar 

  7. Ding C., Helleseth T.: Generalized cyclotomy codes of length $p_{1}^{m_{1}}p_{2}^{m_{2}}\cdots p_{t}^{m_{t}}$. IEEE Trans. Inf. Theory 45(2), 467–474 (1999).

    Article  Google Scholar 

  8. Edemskiy V.: About computation of the linear complexity of generalized cyclotomic sequences with period $p^{n+1}$. Des. Codes Cryptogr. 61, 251–260 (2011).

    Article  MathSciNet  Google Scholar 

  9. Edemskiy V., Li C., Zeng X., Helleseth T.: The linear complexity of generalized cyclotomic binary cyclotomic sequences of period $p^{n}$. Des. Codes Cryptogr. (2018). https://doi.org/10.1007/s10623-018-0513-2.

    Article  MATH  Google Scholar 

  10. Golomb S.W.: Shift register sequence. Holden Day, San Francisco (1967).

    Google Scholar 

  11. Hu H.G., Gong G.: New sets of zeros or low correlation zone sequences via interleaving technique. IEEE Trans. Inf. Theory 56, 1702–1713 (2010).

    Article  MathSciNet  Google Scholar 

  12. Hu L., Yue Q., Wang M.: The linear complexity of Whiteman’s generalized cyclotomic sequences of period $p^{m+1}q^{n+1}$. IEEE Trans. Inf. Theory 58, 5534–5543 (2012).

    Article  MathSciNet  Google Scholar 

  13. Ke P.H., Zhang J., Zhang S.Y.: On the of linear complexity and the autocorrelation of generalized cyclotomic binary sequences with the period $2p^{m}$. Des. Codes Cryptogr. 67(3), 325–339 (2013).

    Article  MathSciNet  Google Scholar 

  14. Kim Y. J., Song H. Y.: Linear complexity of prime $n$-square sequences. In: IEEE International Symposium on Information Theory, Toronto, Canada, pp. 2405–2408 (2008).

  15. Kim Y.J., Jin S.Y., Song H.Y.: Linear complexity and autocorrelation of prime cube sequences. LNCS, vol. 4851, pp. 188–197. Springer, Berlin (2007).

    Google Scholar 

  16. Li D.D., Wen Q.Y.: Linear complexity of generalized cyclotomic binary sequences with period $2p^{m+1}q^{n+1}$. IEICE Trans. Fund. Electron. E 98A, 1244–1254 (2015).

    Article  Google Scholar 

  17. Liu F., Peng D.Y., Tang X.H.: On the autocorrelation and the linear complexity of $q$-ary prime $n$-square sequence. Sequences and Their Applications. LNCS, vol. 6338, pp. 139–150. Springer, Berlin (2010).

    Google Scholar 

  18. Park Y.H., Hong D., Chun E.: On the linear complexity of some generalized cyclotomic sequences. Int. J. Algebra Comput. 14(4), 431–439 (2004).

    Article  MathSciNet  Google Scholar 

  19. Whiteman A.L.: A family of difference sets. Illionis J. Math. 6(1), 107–121 (1962).

    Article  MathSciNet  Google Scholar 

  20. Xiao Z.B., Zeng X.Y., Li C.L., Helleseth T.: New generalized cyclotomic binary sequences of period $p^{2}$. Des. Codes Cryptogr. 86, 1483–1497 (2018).

    Article  MathSciNet  Google Scholar 

  21. Yan T.: Some notes on the generalized cyclotomic binary sequences of length $2p^{m}$ and $p^{m}$. IEICE Trans. Fund. E96–A 10, 2049–2051 (2013).

    Article  Google Scholar 

  22. Yan T., Sun R., Xiao G.: Autocorrelation and linear complexity of the new generalized cyclotomic sequences. IEICE Trans. Fund. Electron. E90–A, 857–864 (2007).

    Article  Google Scholar 

  23. Ye Z.F., Ke P.H., Wu C.H.: A further study on the linear complexity of new binary cyclotomic sequence of length $p^{r}$. arXiv:1712.08886V2 [cs.CR] 15 Mar 2018.

  24. Zeng X., Cai H., Tang X., Yang Y.: Optimal frequency hopping sequences of odd length. IEEE Trans. Inf. Theory 59(5), 3237–3248 (2013).

    Article  MathSciNet  Google Scholar 

  25. Zhang J.W., Zhao C.A., Ma X.: Linear complexity of generalized cyclotomic binary sequences of length $2p^{m}$. Applicable Algebra in Engineering, Communication and Computing, vol. 21, pp. 93–108. Springer, Berlin (2010).

    Google Scholar 

Download references

Acknowledgements

Y. O. would like to thank the Morningside Center of Mathematics for hospitality where part of this paper was written. We thank the referees for many helpful comments, especially for providing a counterexample for a previous conjecture about the linear complexity of sequences in the second class.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhong Xie.

Additional information

Communicated by T. Helleseth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by Anhui Initiative in Quantum Information Technologies (Grant No. AHY150200) and NSFC (Grant No. 11571328).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Y., Xie, X. Linear complexity of generalized cyclotomic sequences of period \(2p^{m}\). Des. Codes Cryptogr. 87, 2585–2596 (2019). https://doi.org/10.1007/s10623-019-00638-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00638-5

Keywords

Mathematics Subject Classification

Navigation