Skip to main content
Log in

Binary additive MRD codes with minimum distance \(n-1\) must contain a semifield spread set

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper we prove a result on the structure of the elements of an additive maximum rank distance (MRD) code over the field of order two, namely that in some cases such codes must contain a semifield spread set. We use this result to classify additive MRD codes in \(M_n(\mathbb {F}_2)\) with minimum distance \(n-1\) for \(n\le 6\). Furthermore we present a computational classification of additive MRD codes in \(M_4(\mathbb {F}_3)\). The computational evidence indicates that MRD codes of minimum distance \(n-1\) are much more rare than MRD codes of minimum distance n, i.e. semifield spread sets. In all considered cases, each equivalence class has a known algebraic construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997).

    Article  MathSciNet  Google Scholar 

  2. Bruen A.: Collineations and extensions of translation nets. Math. Z. 145, 243–249 (1975).

    Article  MathSciNet  Google Scholar 

  3. Cossidente A., Pavese F.: Subspace codes in \({\rm PG}(2n-1, q)\). Combinatorica 37, 1073–1095 (2017).

    Article  MathSciNet  Google Scholar 

  4. Cossidente A., Marino G., Pavese F.: Non-linear maximum rank distance codes. Des. Codes Cryptogr. 79, 597–609 (2016).

    Article  MathSciNet  Google Scholar 

  5. Csajbók B., Siciliano A.: Puncturing maximum rank distance codes. arXiv:1807.04108.

  6. Csajbók B., Marino G., Polverino O., Zanella C.: A new family of MRD-codes. arXiv:1707.08487.

  7. Csajbók B., Marino G., Polverino O., Zhou Y.: Maximum rank-distance codes with maximum left and right idealisers. arXiv:1807.08774.

  8. Csajbók B., Marino G., Zullo F.: New maximum scattered linear sets of the projective line. arXiv:1709.00926.

  9. de la Cruz J., Kiermaier M., Wassermann A., Willems W.: Algebraic structures of MRD codes. Adv. Math. Commun. 10, 499–510 (2016).

    Article  MathSciNet  Google Scholar 

  10. Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25, 226–241 (1978).

    Article  MathSciNet  Google Scholar 

  11. Dempwolff U.: Translation planes of small order. http://www.mathematik.uni-kl.de/~dempw/dempw_Plane.html.

  12. Dempwolff U.: Semifield planes of order 81. J. Geom. 89, 1–16 (2008).

    Article  MathSciNet  Google Scholar 

  13. Dempwolff U., Reifart A.: The classification of the translation planes of order 16, I. Geom. Dedicata 15, 137–153 (1983).

    Article  MathSciNet  Google Scholar 

  14. Dickson L.E.: On finite algebras. Nachr. Ges. Wiss. Gött. 1905, 358–393 (1905).

    MATH  Google Scholar 

  15. Dumas J.-G., Gow R., McGuire G., Sheekey J.: Subspaces of matrices with special rank properties. Linear Algebra Appl. 433, 191–202 (2010).

    Article  MathSciNet  Google Scholar 

  16. Etzion T., Silberstein N.: Codes and designs related to lifted MRD codes. IEEE Trans. Inform. Theory 59, 1004–1017 (2013).

    Article  MathSciNet  Google Scholar 

  17. Gabidulin E.M., Kshevetskiy A.: The new construction of rank codes. In: Proceedings. ISIT 2005.

  18. Heinlein D., Honold T., Kiermaier M., Kurz S., Wassermann A.: Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6. arXiv:1711.06624.

  19. Honold T., Kiermaier M., Kurz S.: Classification of large partial plane spreads in \({\rm PG} (6,2)\) and related combinatorial objects. arXiv:1606.07655.

  20. Kantor W.M.: Finite Semifields, Finite Geometries, Groups, and Computation, pp. 103–114. Walter de Gruyter GmbH & Co. KG, Berlin (2006).

    MATH  Google Scholar 

  21. Knuth D.E.: Finite semifields and projective planes. J. Algebra 2, 182–217 (1965).

    Article  MathSciNet  Google Scholar 

  22. Lavrauw M.: Finite semifields and nonsingular tensors. Des. Codes Cryptrogr. 68, 205–227 (2013).

    Article  MathSciNet  Google Scholar 

  23. Lavrauw M., Polverino O.: Finite semifields. In: De Beule J., Storme L. (eds.) Current Research Topics in Galois Geometries. Nova Academic Publishers, New York (2011).

    Google Scholar 

  24. Lavrauw M., Sheekey J.: Classification of subspaces in \({\mathbb{F}}^2\otimes {\mathbb{F}}^3\) and orbits in \({\mathbb{F}}^2\otimes {\mathbb{F}}^3\otimes {\mathbb{F}}^r\). J. Geom. 108, 5–23 (2017).

    Article  MathSciNet  Google Scholar 

  25. Lunardon G., Trombetti R., Zhou Y.: Generalized twisted Gabidulin codes. arXiv:1507.07855.

  26. Marino G., Polverino O.: On the nuclei of a finite semifield. Theory and applications of finite fields. Contemp. Math. 579, 123–151 (2012).

    Article  Google Scholar 

  27. Menichetti G.: On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field. J. Algebra 47, 400–410 (1977).

    Article  MathSciNet  Google Scholar 

  28. Ozbudak F., Otal K.: Additive rank-metric codes. IEEE Trans. Inform. Theory 63, 164–168 (2017).

    Article  MathSciNet  Google Scholar 

  29. Rúa I.F., Combarro E.F., Ranilla J.: Classification of semifields of order 64. J. Algebra 322, 4011–4029 (2009).

    Article  MathSciNet  Google Scholar 

  30. Rúa I.F., Combarro E.F., Ranilla J.: New advances in the computational exploration of semifields. Int. J. Comput. Math. 88, 1990–2000 (2011).

    Article  MathSciNet  Google Scholar 

  31. Rúa I.F., Combarro E.F., Ranilla J.: Determination of division algebras with 243 elements. Finite Fields Appl. 18, 1148–1155 (2012).

    Article  MathSciNet  Google Scholar 

  32. Rúa I.F., Combarro E.F., Ranilla J.: Finite semifields with \(7^4\) elements. Int. J. Comput. Math. 89, 1865–1878 (2012).

    Article  MathSciNet  Google Scholar 

  33. Schmidt K.-U., Zhou Y.: On the number of inequivalent MRD codes. arXiv:1702.04582.

  34. Segre B.: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl. 64, 1–76 (1964).

    Article  MathSciNet  Google Scholar 

  35. Sheekey J.: New semifields and new MRD codes from skew polynomial rings. arXiv:1806.00251.

  36. Sheekey J.: A new family of linear maximum rank distance codes. Adv. Math. Commun. 10, 475–488 (2016).

    Article  MathSciNet  Google Scholar 

  37. Silva D., Kschischang F.R., Koetter R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inform. Theory 54, 3951–3967 (2008).

    Article  MathSciNet  Google Scholar 

  38. Trombetti R., Zhou Y.: A new family of MRD codes in \({\mathbb{F}}_{q}^{2n\times 2n}\) with right and middle nuclei \({\mathbb{F}}_{q^n}\). arXiv:1709.03908.

  39. Walker R.J.: Determination of division algebras with \(32\) elements. In: Proceedings of Symposia in Applied Mathematics, American Mathematical Society, pp. 83–85 (1962).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Sheekey.

Additional information

Communicated by G. McGuire.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheekey, J. Binary additive MRD codes with minimum distance \(n-1\) must contain a semifield spread set. Des. Codes Cryptogr. 87, 2571–2583 (2019). https://doi.org/10.1007/s10623-019-00637-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00637-6

Keywords

Mathematics Subject Classification

Navigation