Skip to main content
Log in

A note on good permutation codes from Reed–Solomon codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let M(nd) be the maximum size of a permutation code of length n and distance d. In this note, the permutation codewords of a classical code C are considered. These are the codewords with all different entries in C. Using these codewords for Reed–Solomon codes, we present some good permutation codes in this class of codes. As a consequence, since these codes are subsets of Reed–Solomon codes, decoding algorithms known for Reed–Solomon codes can also be used as a decoding algorithm for them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bereg S., Levy A., Sudborough I.H.: Constructing permutation arrays from groups. Des. Codes Cryptogr. 86(5), 1095–1111 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bereg S., Mojica L.G., Morales L., Sudborough H.: Parallel partition and extension: Better permutation arrays for hamming distances. In: Conference on Information Science and Systems (CISS), pp. 1–6. IEEE (2017).

  3. Bereg S., Morales L., Sudborough I.H.: Extending permutation arrays: improving MOLS bounds. Des. Codes Cryptogr. 83(3), 661–683 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger T.P.: A direct proof for the automorphism group of Reed–Solomon codes. In: Cohen G., Charpin P. (eds.) Proc. Eurocode 90. Lecture Notes in Computer Science, vol. 514, pp. 21–29. Springer, Berlin (1991).

  5. Chu W., Colbourn C.J., Dukes P.: Constructions for permutation codes in powerline communications. Des. Codes Cryptogr. 32(1–3), 51–64 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  6. Colbourn C.J., Kløve T., Ling A.C.H.: Permutation arrays for powerline communication and mutually orthogonal latin squares. IEEE Trans. Inf. Theory 50(6), 1289–1291 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. de la Torre D.R., Colbourn C.J., Ling A.C.H.: An application of permutation arrays to block ciphers. Cong. Numer. 145, 5–7 (2000).

    MathSciNet  MATH  Google Scholar 

  8. Deza M., Vanstone S.A.: Bounds for permutation arrays. J. Stat. Plan. Inference 2, 197–209 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  9. Dickson L.E.: Linear Groups with an Exposition of the Galois Field Theory. Dover, New York (1958).

    MATH  Google Scholar 

  10. Dür A.: The automorphism groups of Reed–Solomon codes. J. Comb. Theory Ser. A 44(1), 69–82 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferreira H.C., Vinck A.J.H.: Inference cancellation with permutation trellis arrays. In: Proceedings of IEEE Vehicular Technology Conference, Boston, pp. 2401–2407 (2000).

  12. Frankl P., Deza M.: On the maximum number of permutations with given maximal or minimal distance. J. Comb. Theory Ser. A 22(3), 352–360 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao S.: A new algorithm for decoding Reed–Solomon codes. In: Bhargava V.K., Poor H.V., Tarokh V., Yoon S. (eds.) Communications, Information and Network Security, vol. 712. The Springer International Series in Engineering and Computer Science (Communications and Information Theory)Springer, Boston (2003).

    Google Scholar 

  14. Gorenstein D., Zierler N.: A class of error correcting codes in \(p^m\) symbols. J. Soc. Ind. Appl. Math. 9(2), 207–214 (1961).

    Article  MATH  Google Scholar 

  15. Gao F., Yang Y., Ge G.: An improvement on the Gilbert–Varshamov bound for permutation codes. IEEE Trans. Inf. Theory 59(5), 3059–3063 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. Janiszczak I., Lempken W., Östergård P.R.J., Staszewski R.: Permutation codes invariant under isometries. Des. Codes Cryptogr. 75(3), 497–507 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  17. Janiszczak I., Staszewski R.: An improved bound for permutation arrays of length 10. Technical Report 4, Institute for Experimental Mathematics, University Duisburg-Essen (2008).

  18. Li J., Chandler D.B., Xiang Q.: Permutation polynomials of degree 6 or 7 over finite fields of characteristic 2. Finite Fields Appl. 16, 406–419 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  19. Lidl R., Mullen G.L.: When does a polynomial over a finite field permute the elements of the field? Am. Math. Mon. 95(3), 243–246 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  20. Lidl R., Mullen G.L.: When does a polynomial over a finite field permute the elements of the field? II. Am. Math. Mon. 100(1), 71–74 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  21. Massey J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory IT–15, 122–127 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  22. Mojica L.G.: Permutation arrays with large Hamming distance, Ph.D. Thesis, University of Texas (2017).

  23. Mullen G.L., Panario D.: Handbook of Finite Fields. CRC Press, Hoboken (2013). Chapter 8.

    Book  MATH  Google Scholar 

  24. Pavlidou N., Vinck A.J.H., Yazdani J., Honary B.: Power line communications: state of the art and future trends. IEEE Commun. Mag. 41, 34–40 (2003).

    Article  Google Scholar 

  25. Reed I.S., Solomon G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  26. Shallue C.J., Wanless I.M.: Permutation polynomials and orthomorphism polynomials of degree six. Finite Fields Appl. 20, 84–92 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  27. Smith D.H., Montemanni R.: A new table of permutation codes. Des. Codes Cryptogr. 63(2), 241–253 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  28. Source files of the codes: http://sciold.ui.ac.ir/~r.sobhani/NPA. Last accessed 21 July 2018.

  29. Sudan M.: Decoding of Reed Solomon codes beyond the error-correction bound. J. Complex. 13(1), 180–193 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  30. Vinck A.J.H.: Coded modulation for powerline communications. AEÜ Int. J. Electron. Commun. 54(1), 45–49 (2000).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous referees whose comments greatly improved the results and presentation of the paper. The first author was supported in part by Grant No. 95050080 from School of Mathematics, Institute for Research in Fundamental Sciences (IPM). The second author was supported in part by Grant No. 96050219 from School of Mathematics, Institute for Research in Fundamental Sciences (IPM). The second author was additionally financially supported by the Center of Excellence for Mathematics at the University of Isfahan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sobhani.

Additional information

Communicated by C. J. Colbourn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhani, R., Abdollahi, A., Bagherian, J. et al. A note on good permutation codes from Reed–Solomon codes. Des. Codes Cryptogr. 87, 2335–2340 (2019). https://doi.org/10.1007/s10623-019-00621-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00621-0

Keywords

Mathematics Subject Classification

Navigation