Skip to main content
Log in

Transparency order for Boolean functions: analysis and construction

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The notion of transparency order, proposed by Prouff (DPA attacks and S-boxes, FSE 2005, LNCS 3557, Springer, Berlin, 2005) and then redefined by Chakraborty et al. (Des Codes Cryptogr 82:95–115, 2017), is a property that attempts to characterize the resilience of cryptographic algorithms against differential power analysis attacks. In this paper, we give a tight upper bound on the transparency order in terms of nonlinearity, inferring the worst possible transparency order of those functions with the same nonlinearity. We also give a lower bound between transparency order and nonlinearity. We study certain classes of Boolean functions for their transparency order and find that this parameter for some functions of low algebraic degree can be determined by their nonlinearity. Finally, we construct two infinite classes of balanced semibent Boolean functions with provably relatively good transparency order (this is the first time that an infinite class of highly nonlinear balanced functions with provably good transparency order is given).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryant R.E.: On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication. IEEE Trans. Comput. 40(2), 205–213 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  2. Canteaut A., Videau M.: Symmetric Boolean functions. IEEE Trans. Inf. Theory 51, 2791–2811 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlet C.: On Highly Nonlinear S-Boxes and Their Inability to Thwart DPA Attacks. Progress in Cryptology-INDOCRYPT 2005, LNCS 3797, pp. 49–62. Springer, Berlin (2005).

  4. Carlet C.: Boolean functions for cryptography and error correcting codes, chapter of the monography. In: Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010). http://www-roc.inria.fr/secret/Claude.Carlet/pubs.html.

  5. Carlet C., Feng K.: An Infinite Class of Balanced Functions with Optimal Algebraic Immunity, Good Immunity to Fast Algebraic Attacks and Good Nonlinearity. Advances in Cryptology-ASIACRYPT 2008, LNCS 5350, pp. 425–440. Springer, Berlin (2008).

  6. Carlet C., Dalai D.K., Gupta K.C., Maitra S.: Algebraic immunity for cryptographically significant Boolean functions: analysis and construction. IEEE Trans. Inf. Theory 52(7), 3105–3121 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  7. Chakraborty K., Sarkar S., Maitra S., Mazumdar B., Mukhopadhyay D., Prouff E.: Redefining the transparency order. Des. Codes Cryptogr. 82, 95–115 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. Cusick T.W., Stănică P.: Cryptographic Boolean Functions and Applications, 2nd edn. Elsevier, Academic Press (2017).

    MATH  Google Scholar 

  9. Evci M.A., Kavut S.: DPA Resilience of Rotation-Symmetric S-boxes, IWSEC, pp. 146–157 (2014).

  10. Fei Y., Luo Q., Ding A.A.: A Statistical Model for DPA with Novel Algorithmic Confusion Analysis, CHES 2012, LNCS 7428, pp. 233–250. Springer, Berlin (2012).

  11. Fei Y., Ding A.A., Lao J., Zhang L.: A Statistics-Based Fundamental Model for Side-Channel Attack Analysis, IACR Cryptology ePrint Archive, Report 2014/152 (2014).

  12. Feng K., Liao Q., Yang J.: Maximum values of generalized algebraic immunity. Des. Codes Cryptogr. 50(2), 243–252 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. Fischer W., Gammel B.M., Kniffler O., Velten J.: Differential Power Analysis of Stream Ciphers, CT-RSA 2007, LNCS 4377, pp. 257–270. Springer, Berlin (2006).

  14. Guilley S., Pacalet R.: Differential Power Analysis Model and Some Results, CARDIS, pp. 127–142 (2004).

  15. Harrison M.A.: On the classification of Boolean functions by the general linear and affine groups. J. Soc. Ind. Appl. Math. 12(2), 285–299 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  16. Jain A., Chaudhari N.S.: Evolving Highly Nonlinear Balanced Boolean Functions with Improved Resistance to DPA Attacks, NSS 2015, LNCS 9408, pp. 316–330. Springer, Berlin (2015).

  17. Kocher P.: Timing attacks on implementations of Diffie–Hellman, RSA, DSS, and other systems, Advances in Cryptology–CRYPTO’96, LNCS 1109, pp. 104–113. Springer, Berlin (1996).

  18. Kocher P., Jaffe J., Jun B.: Differential Power Analysis, Advances in Cryptology–CRYPTO’99, LNCS 1666, pp. 388–397. Springer, Berlin (1999).

  19. Langevin P.: Classification of Boolean functions under the affine group. http://langevin.univ-tln.fr/project/agl/agl.html.

  20. Maiorana J.A.: A classification of the cosets of the Reed–Muller code R(1,6). Math. Comput. 57(195), 403–414 (1991).

    MathSciNet  MATH  Google Scholar 

  21. Mangard S., Oswald E., Popp T.: Power Analysis Attacks-Revealing the Secrets of Smart Cards. Springer, Berlin (2007).

    MATH  Google Scholar 

  22. Mazumdar B., Mukhopadhyay D.: Construction of rotation symmetric \(S\)-boxes with high nonlinearity and improved DPA resistivity. IEEE Trans. Comput. 66(1), 59–72 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  23. Mazumdar B., Mukhopadhyay D., Sengupta I.: Design and implementation of rotation symmetric S-boxes with high nonlinearity and high DPA resilience. In: 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 87–92 (2013).

  24. Mazumdar B., Mukhopadhyay D., Sengupta I.: Constrained search for a class of good bijective S-boxes with improved DPA resistivity. IEEE Trans. Inf. Forensics Secur. 8(12), 2154–2163 (2013).

    Article  Google Scholar 

  25. Nguyen C., Tran L., Nguyen K.: On the resistance of Serpent-type 4 bit S-boxes against differential power attacks, 2014 IEEE Fifth International Conference on Communication and Electronics (ICCE), pp. 542–547 (2014).

  26. Patranabis S., Roy D.B., Chakraborty A., Nagar N., Singh A., Mukhopadhyay D., Ghosh S.: Lightweight design-for-security strategies for combined countermeasures against side channel and fault analysis in IoT applications. Journal of Hardware and Systems Security (to appear).

  27. Picek S., Batina L., Jakobovic D.: Evolving DPA-Resistant Boolean Functions, PPSN 2014, LNCS 8672, pp. 812–821. Springer, Berlin (2014).

  28. Picek S., Ege B., Batina L., Jakobovic D., Chmielewski L., Golub M.: On Using Genetic Algorithms for Intrinsic Side-channel Resistance: The Case of AES S-box. In: Proceedings of the First Workshop on Cryptography and Security in Computing Systems, ser. CS2, pp. 13–18 (2014).

  29. Picek S., Ege B., Papagiannopoulos K., Batina L., Jakobovic D.: Optimality and beyond: the case of 4x4 S-boxes, 2014 In: IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 80–83 (2014).

  30. Picek S., Papagiannopoulos K., Ege B., Batina L., Jakobovic D.: Confused by Confusion: Systematic Evaluation of DPA Resistance of Various S-boxes, Progress in Cryptology-INDOCRYPT 2014, LNCS 8885, pp. 374–390. Springer, Berlin (2014).

  31. Picek S., Mazumdar B., Mukhopadhyay D., Batina L.: Modified Transparency Order Property: Solution or Just Another Attempt, SPACE 2015, LNCS 9354, pp. 210–227. Springer, Berlin (2015).

  32. Prouff E.: DPA Attacks and S-Boxes, FSE 2005, LNCS 3557, pp. 424–441. Springer, Berlin (2005).

  33. Rizomiliotis P.: On the resistance of boolean functions against algebraic attacks using univariate polynomial representation. IEEE Trans. Inf. Theory 56(8), 4014–4024 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  34. Sarkar S., Maitra S., Chakraborty K.: Differential Power Analysis in Hamming Weight Model: How to Choose among (Extended) Affine Equivalent S-boxes, Progress in Cryptology-INDOCRYPT 2014, LNCS 8885, pp. 360–373. Springer, Berlin (2014).

  35. Selvam R., Shanmugam D., Annadurai S.: Decomposed \(S\)-Boxes and DPA Attacks: A Quantitative Case Study Using PRINCE, SPACE, pp. 179–193 (2016).

  36. Stănică P., Maitra S.: Rotation symmetric boolean functions-count and cryptographic properties. Discret. Appl. Math. 156, 1567–1580 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  37. Stănică P., Maitra S., Clark J.: Results on rotation symmetric bent and correlation immune Boolean functions, FSE 2004, LNCS 3017, pp. 161–177. Springer, Berlin (2004)

  38. Tan C., Goh S.: Several classes of even-variable balanced Boolean functions with optimal algebraic immunity. IEICE Trans. E94.A(1), 165–171 (2011).

    Article  Google Scholar 

  39. Tang D., Carlet C., Tang X.: Highly nonlinear boolean functions with optimal algebraic immunity and good behavior against fast algebraic attacks. IEEE Trans. Inf. Theory 59(1), 653–664 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  40. Tu Z., Deng Y.: A conjecture about binary strings and its applications on constructing Boolean functions with optimal algebraic immunity. Des. Codes Cryptogr. 60(1), 1–14 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang Q., Peng J., Kan H., Xue X.: Constructions of cryptographically significant Boolean functions using primitive polynomials. IEEE Trans. Inf. Theory 56(6), 3048–3053 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang Q., Carlet C., Stănică P., Tan C.: Cryptographic properties of the hidden weighted bit function. Discret. Appl. Math. 174, 1–10 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  43. Zeng X., Carlet C., Shan J., Hu L.: More balanced Boolean functions with optimal algebraic immunity, and good nonlinearity and resistance to fast algebraic attacks. IEEE Trans. Inf. Theory 57(9), 6310–6320 (2011).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers of this manuscript for extraordinarily useful criticisms and suggestions. The first author would like to thank the financial support from the National Natural Science Foundation of China (Grant No. 61572189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qichun Wang.

Additional information

Communicated by C. Carlet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Stănică, P. Transparency order for Boolean functions: analysis and construction. Des. Codes Cryptogr. 87, 2043–2059 (2019). https://doi.org/10.1007/s10623-019-00604-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00604-1

Keywords

Mathematics Subject Classification

Navigation