Skip to main content
Log in

Transitive PSL(2,11)-invariant k-arcs in PG(4,q)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A k-arc in the projective space \(\mathrm{PG}(n,q)\) is a set of k projective points such that no subcollection of \(n+1\) points is contained in a hyperplane. In this paper, we construct new 60-arcs and 110-arcs in \(\mathrm{PG}(4,q)\) that do not arise from rational or elliptic curves. We introduce computational methods that, when given a set \(\mathcal {P}\) of projective points in the projective space of dimension n over an algebraic number field \({\mathbb {Q}}(\xi )\), determines a complete list of primes p for which the reduction modulo p of \(\mathcal {P}\) to the projective space \(\mathrm{PG}(n,p^h)\) may fail to be a k-arc. Using these methods, we prove that there are infinitely many primes p such that \(\mathrm{PG}(4,p)\) contains a \(\mathrm{PSL}(2,11)\)-invariant 110-arc, where \(\mathrm{PSL}(2,11)\) is given in one of its natural irreducible representations as a subgroup of \(\mathrm{PGL}(5,p)\). Similarly, we show that there exist \(\mathrm{PSL}(2,11)\)-invariant 110-arcs in \(\mathrm{PG}(4,p^2)\) and \(\mathrm{PSL}(2,11)\)-invariant 60-arcs in \(\mathrm{PG}(4,p)\) for infinitely many primes p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott R., Bray J., Linton S., Nickerson S., Norton S., Parker R., Suleiman I., Tripp J., Walsh P., Wilson R.: Atlas of finite group representations—version 3. http://brauer.maths.qmul.ac.uk/Atlas/v3/.

  2. Bamberg J., Betten A., Cara Ph, De Beule J., Lavrauw M., Neunhöffer M.: Finite incidence geometry. FInInG-a GAP package, version 1(4) (2017).

  3. Bartoli D., Giuletti M., Platoni I.: On the covering radius of MDS codes. IEEE Trans. Inf. Theory 61(2), 801–811 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bray J.N., Holt D.F., Roney-Dougal C.M.: The maximal subgroups of the low-dimensional finite classical groups. With a foreword by M. Liebeck. London Mathematical Society Lecture Note Series, 407. Cambridge University Press, Cambridge (2013).

  5. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: Atlas of finite groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G, Thackray (1985).

  6. Giulietti M., Korchmáros G., Marcugini S., Pambianco F.: Transitive \(A_6\)-invariant \(k\)-arcs in \({{\rm PG}}(2, q)\). Des. Codes Cryptogr. 68, 73–79 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  7. Indaco L., Korchmáros G.: \(42\)-arcs in \({{\rm PG}}(2, q)\) left invariant by \({{\rm PSL}}(2,7)\). Des. Codes Cryptogr. 64, 33–46 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. Jackson W.-A., Martin K.M., O’Keefe C.M.: Geometrical contributions to secret sharing theory. J. Geom. 79(1–2), 102–133 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  9. Korchmáros G., Pace N.: Infinite family of large complete arcs in \({{\rm PG}}(2, q^n)\) with \(q\) odd and \(n>1\) odd. Des. Codes Cryptogr. 55, 285–296 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  10. Korchmáros G., Lanzone V., Sonnino A.: Projective \(k\)-arcs and \(2\)-level secret-sharing schemes. Des. Codes Cryptogr. 64(1–2), 3–15 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. Olson T., Swartz E.: Transitive \({{\rm PSL}}(2,11)\)-invariant \(k\)-arcs in \({{\rm PG}}(4,q)\) (including supporting GAP code). arXiv:1804.09707.

  12. Pace N.: On small complete arcs and transitive \(A_5\)-invariant arcs in the projective plane \({{\rm PG}}(2, q)\). J. Comb. Des. 22(10), 425–434 (2014).

    Article  MATH  Google Scholar 

  13. Pace N., Sonnino A.: On linear codes admitting large automorphism groups. Des. Codes Cryptogr. 83(1), 115–143 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. Simmons G.J., Jackson W.-A., Martin K.M.: The geometry of shared secret schemes. Bull. Inst. Comb. Appl. 1, 71–87 (1991).

    MathSciNet  MATH  Google Scholar 

  15. Sonnino A.: Transitive \({{\rm PSL}}(2,7)\)-invariant \(42\)-arcs in \(3\)-dimensional projective spaces. Des. Codes Cryptogr. 72, 455–463 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  16. Thas J.A.: M.D.S. codes and arcs in projective spaces: a survey. Mathematiche (Catania) 47(2), 315–328 (1993).

    MathSciNet  MATH  Google Scholar 

  17. The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.8.9 (2017). https://www.gap-system.org.

  18. Tolhuizen L.M.G.M., van Gils W.J.: A large automorphism group decreases the computations in the construction of an optimal encoder/decoder pair for a linear block code. IEEE Trans. Inf. Theory 34(2), 333–338 (1988).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank John Bamberg for helpful discussions about the \({\mathrm{GAP}}\) package FinInG and Jan De Beule for \({\mathrm{GAP}}\) code that allows for calculations using FinInG beyond what is normally possible in \({\mathrm{GAP}}\). The authors would also like to thank the anonymous referees for many useful suggestions that improved the readability of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Swartz.

Additional information

Communicated by G. Lunardon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by the NSF EXTREEMS-QED Grant DMS-1331921.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olson, T., Swartz, E. Transitive PSL(2,11)-invariant k-arcs in PG(4,q). Des. Codes Cryptogr. 87, 1871–1879 (2019). https://doi.org/10.1007/s10623-018-0588-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0588-9

Keywords

Mathematics Subject Classification

Navigation