Skip to main content
Log in

Additive perfect codes in Doob graphs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The Doob graph D(mn) is the Cartesian product of \(m>0\) copies of the Shrikhande graph and n copies of the complete graph of order 4. Naturally, D(mn) can be represented as a Cayley graph on the additive group \((Z_4^2)^m \times (Z_2^2)^{n'} \times Z_4^{n''}\), where \(n'+n''=n\). A set of vertices of D(mn) is called an additive code if it forms a subgroup of this group. We construct a 3-parameter class of additive perfect codes in Doob graphs and show that the known necessary conditions of the existence of additive 1-perfect codes in \(D(m,n'+n'')\) are sufficient. Additionally, two quasi-cyclic additive 1-perfect codes are constructed in \(D(155,0+31)\) and \(D(2667,0+127)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borges J., Fernández-Córdoba C.: There is exactly one \({Z_2Z_4}\)-cyclic \(1\)-perfect code. Des. Codes Cryptogr. 85(3), 557–566 (2017). https://doi.org/10.1007/s10623-016-0323-3.

    Article  MathSciNet  MATH  Google Scholar 

  2. Hammons Jr. A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \(Z_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994). https://doi.org/10.1109/18.312154.

    Article  MATH  Google Scholar 

  3. Heden O., Güzeltepe M.: On perfect \(1\)-\(\cal{E}\)-error-correcting codes. Math. Commun. 20(1), 23–35 (2015).

    MathSciNet  MATH  Google Scholar 

  4. Herzog M., Schönheim J.: Linear and nonlinear single-error-correcting perfect mixed codes. Inf. Control 18(4), 364–368 (1971). https://doi.org/10.1016/S0019-9958(71)90464-5.

    Article  MathSciNet  MATH  Google Scholar 

  5. Koolen J.H., Munemasa A.: Tight \(2\)-designs and perfect \(1\)-codes in Doob graphs. J. Stat. Plann. Inference 86(2), 505–513 (2000). https://doi.org/10.1016/S0378-3758(99)00126-3.

    Article  MathSciNet  MATH  Google Scholar 

  6. Krotov D.S.: Perfect codes in Doob graphs. Des. Codes Cryptogr. 80(1), 91–102 (2016). https://doi.org/10.1007/s10623-015-0066-6.

    Article  MathSciNet  MATH  Google Scholar 

  7. Tietäväinen A.: On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 24(1), 88–96 (1973). https://doi.org/10.1137/0124010.

    Article  MathSciNet  Google Scholar 

  8. Wan Z.X.: Quaternary Codes, Series on Applied Mathematics. World Scientific, Singapore (1997). https://doi.org/10.1142/3603.

    Google Scholar 

  9. Zinoviev V., Leontiev V.: The nonexistence of perfect codes over Galois fields. Probl. Control Inf. Theory 2(2), 123–132 (1973).

    Google Scholar 

Download references

Acknowledgements

The authors thank Tatsuro Ito, Jack Koolen, and Patrick Solé for the consulting concerning the last remark and the anonymous referees for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjia Shi.

Additional information

Communicated by J. H. Koolen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by National Natural Science Foundation of China (61672036), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China (05015133), Excellent Youth Foundation of Natural Science Foundation of Anhui Province (No. 1808085J20), and the Program of fundamental scientific researches of the Siberian Branch of the Russian Academy of Sciences No. I.1.1. (No. 0314-2016-0016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Huang, D. & Krotov, D.S. Additive perfect codes in Doob graphs. Des. Codes Cryptogr. 87, 1857–1869 (2019). https://doi.org/10.1007/s10623-018-0586-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0586-y

Keywords

Mathematics Subject Classification

Navigation