Skip to main content
Log in

Equiangular tight frames from group divisible designs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

An equiangular tight frame (ETF) is a type of optimal packing of lines in a real or complex Hilbert space. In the complex case, the existence of an ETF of a given size remains an open problem in many cases. In this paper, we observe that many of the known constructions of ETFs are of one of two types. We further provide a new method for combining a given ETF of one of these two types with an appropriate group divisible design (GDD) in order to produce a larger ETF of the same type. By applying this method to known families of ETFs and GDDs, we obtain several new infinite families of ETFs. The real instances of these ETFs correspond to several new infinite families of strongly regular graphs. Our approach was inspired by a seminal paper of Davis and Jedwab which both unified and generalized McFarland and Spence difference sets. Our main result is a combinatorial analog of their algebraic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel R.J.R., Greig M.: BIBDs with small block size. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 72–79. CRC Press, Boca Raton (2007).

    Google Scholar 

  2. Abel R.J.R., Colbourn C.J., Dinitz J.H.: Mutually orthogonal Latin squares (MOLS). In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 160–193. CRC Press, Boca Raton (2007).

    Google Scholar 

  3. Azarija J., Marc T.: There is no (75,32,10,16) strongly regular graph. arXiv:1509.05933.

  4. Azarija J., Marc T.: There is no (95,40,12,20) strongly regular graph. arXiv:1603.02032.

  5. Bajwa W.U., Calderbank R., Mixon D.G.: Two are better than one: fundamental parameters of frame coherence. Appl. Comput. Harmon. Anal. 33, 58–78 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bandeira A.S., Fickus M., Mixon D.G., Wong P.: The road to deterministic matrices with the Restricted Isometry Property. J. Fourier Anal. Appl. 19, 1123–1149 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  7. Barg A., Glazyrin A., Okoudjou K.A., Yu W.-H.: Finite two-distance tight frames. Linear Algebra Appl. 475, 163–175 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodmann B.G., Elwood H.J.: Complex equiangular Parseval frames and Seidel matrices containing \(p\)th roots of unity. Proc. Am. Math. Soc. 138, 4387–4404 (2010).

    Article  MATH  Google Scholar 

  9. Bodmann B.G., Paulsen V.I., Tomforde M.: Equiangular tight frames from complex Seidel matrices containing cube roots of unity. Linear Algebra Appl. 430, 396–417 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. Bracken C., McGuire G., Ward H.: New quasi-symmetric designs constructed using mutually orthogonal Latin squares and Hadamard matrices. Des. Codes Cryptogr. 41, 195–198 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  11. Brouwer A.E.: Strongly regular graphs. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 852–868. CRC Press, Boca Raton (2007).

    Google Scholar 

  12. Brouwer A.E.: Parameters of strongly regular graphs. http://www.win.tue.nl/~aeb/graphs/srg/.

  13. Chang K.I.: An existence theory for group divisible designs. Ph.D. Thesis, The Ohio State University (1976).

  14. Chen Y.Q.: On the existence of abelian Hadamard difference sets and a new family of difference sets. Finite Fields Appl. 3, 234–256 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  15. Corneil D., Mathon R. (eds.): Geometry and Combinatorics: Selected Works of J. J. Seidel. Academic Press, New York (1991).

    Google Scholar 

  16. Coutinho G., Godsil C., Shirazi H., Zhan H.: Equiangular lines and covers of the complete graph. Linear Algebra Appl. 488, 264–283 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. Davis J.A., Jedwab J.: A unifying construction for difference sets. J. Comb. Theory Ser. A 80, 13–78 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  18. Ding C., Feng T.: A generic construction of complex codebooks meeting the Welch bound. IEEE Trans. Inf. Theory 53, 4245–4250 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  19. Fickus M., Mixon D.G.: Tables of the existence of equiangular tight frames. arXiv:1504.00253 (2016).

  20. Fickus M., Mixon D.G., Tremain J.C.: Steiner equiangular tight frames. Linear Algebra Appl. 436, 1014–1027 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  21. Fickus M., Mixon D.G., Jasper J.: Equiangular tight frames from hyperovals. IEEE Trans. Inf. Theory 62, 5225–5236 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  22. Fickus M., Jasper J., Mixon D.G., Peterson J.D.: Tremain equiangular tight frames. J. Comb. Theory Ser. A 153, 54–66 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  23. Fickus M., Jasper J., Mixon D.G., Peterson J.D.: Hadamard equiangular tight frames. arXiv:1703.05353.

  24. Fickus M., Jasper J., Mixon D.G., Peterson J.D., Watson C.E.: Equiangular tight frames with centroidal symmetry. Appl. Comput. Harmon. Anal. (to appear).

  25. Fickus M., Jasper J., Mixon D.G., Peterson J.D., Watson C.E.: Polyphase equiangular tight frames and abelian generalized quadrangles. Appl. Comput. Harmon. Anal. (to appear).

  26. Fuchs C.A., Hoang M.C., Stacey B.C.: The SIC question: history and state of play. Axioms 6, 21 (2017).

    Article  Google Scholar 

  27. Ge G.: Group divisible designs. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 255–260. CRC Press, Boca Raton (2007).

    Google Scholar 

  28. Godsil C.D.: Krein covers of complete graphs. Aust. J. Comb. 6, 245–255 (1992).

    MathSciNet  MATH  Google Scholar 

  29. Goethals J.M., Seidel J.J.: Strongly regular graphs derived from combinatorial designs. Can. J. Math. 22, 597–614 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  30. Gordon D.: La Jolla covering repository. https://www.ccrwest.org/diffsets.html.

  31. Grassl M., Scott A.J.: Fibonacci-Lucas SIC-POVMs. J. Math. Phys. 58, 122201 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  32. Holmes R.B., Paulsen V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  33. Iverson J.W., Jasper J., Mixon D.G.: Optimal line packings from nonabelian groups. arXiv:1609.09836.

  34. Jasper J., Mixon D.G., Fickus M.: Kirkman equiangular tight frames and codes. IEEE Trans. Inf. Theory 60, 170–181 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  35. Jungnickel D., Pott A., Smith K.W.: Difference sets. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 419–435. CRC Press, Boca Raton (2007).

    Google Scholar 

  36. Lamken E.R., Wilson R.M.: Decompositions of edge-colored complete graphs. J. Comb. Theory Ser. A 89, 149–200 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  37. Lemmens P.W.H., Seidel J.J.: Equiangular lines. J. Algebra 24, 494–512 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  38. Mathon R., Rosa A.: \(2-(v, k,\lambda )\) designs of small order. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 25–58. CRC Press, Boca Raton (2007).

    Google Scholar 

  39. MacNeish H.F.: Euler squares. Ann. Math. 23, 221–227 (1922).

    Article  MathSciNet  MATH  Google Scholar 

  40. McFarland R.L.: A family of difference sets in non-cyclic groups. J. Comb. Theory Ser. A 15, 1–10 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  41. McGuire G.: Quasi-symmetric designs and codes meeting the Grey-Rankin bound. J. Comb. Theory Ser. A 78, 280–291 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  42. Mohácsy H.: The asymptotic existence of group divisible designs of large order with index one. J. Comb. Theory Ser. A 118, 1915–1924 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  43. Renes J.M.: Equiangular tight frames from Paley tournaments. Linear Algebra Appl. 426, 497–501 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  44. Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  45. Seidel J.J.: A survey of two-graphs. Coll. Int. Teorie Combin., Atti dei Convegni Lincei, vol. 17, pp. 481–511. Accademia Nazionale dei Lincei, Rome (1976).

    Google Scholar 

  46. Spence E.: A family of difference sets. J. Comb. Theory Ser. A 22, 103–106 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  47. Strohmer T.: A note on equiangular tight frames. Linear Algebra Appl. 429, 326–330 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  48. Strohmer T., Heath R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14, 257–275 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  49. Sustik M.A., Tropp J.A., Dhillon I.S., Heath R.W.: On the existence of equiangular tight frames. Linear Algebra Appl. 426, 619–635 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  50. Szöllősi F.: All complex equiangular tight frames in dimension 3. arXiv:1402.6429.

  51. Tropp J.A.: Complex equiangular tight frames. Proc. SPIE 5914, 591401/1–11 (2005).

  52. Tropp J.A., Dhillon I.S., Heath Jr. R.W., Strohmer T.: Designing structured tight frames via an alternating projection method. IEEE Trans. Inf. Theory 51, 188–209 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  53. Turyn R.J.: Character sums and difference sets. Pac. J. Math. 15, 319–346 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  54. van Lint J.H., Seidel J.J.: Equilateral point sets in elliptic geometry. Indag. Math. 28, 335–348 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  55. Waldron S.: On the construction of equiangular frames from graphs. Linear Algebra Appl. 431, 2228–2242 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  56. Welch L.R.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf. Theory 20, 397–399 (1974).

    Article  MATH  Google Scholar 

  57. Wilson R.M.: An existence theory for pairwise balanced designs I. Composition theorems and morphisms. J. Comb. Theory Ser. A 13, 220–245 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  58. Xia P., Zhou S., Giannakis G.B.: Achieving the Welch bound with difference sets. IEEE Trans. Inf. Theory 51, 1900–1907 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  59. Zauner G.: Quantum designs: foundations of a noncommutative design theory. Ph.D. Thesis, University of Vienna (1999).

Download references

Acknowledgements

We thank the editors and the three anonymous reviewers for their comments, all of which were helpful. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This work was partially supported by the Summer Faculty Fellowship Program of the United States Air Force Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Fickus.

Additional information

Communicated by J. Jedwab.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fickus, M., Jasper, J. Equiangular tight frames from group divisible designs. Des. Codes Cryptogr. 87, 1673–1697 (2019). https://doi.org/10.1007/s10623-018-0569-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0569-z

Keywords

Mathematics Subject Classification

Navigation