Appendix A: Complete proof of Proposition 4.6
Proposition 4.6
Let m, l be positive integers and \(1\le k\le m-2\). Let \(U_i\)\((1\le i \le m-k-1)\) be disjoint sets in \({\mathbb {F}}_2^k\) satisfying \(\sum \nolimits _{i=1}^{m-k-1}\#U_i\le 2^{k-2}-l\) and such that, for any \(U_i\), any element in \({\mathbb {F}}_2^k\) appears at least 2l times in the multiset \(\{*\ z_1+z_2| (z_1,z_2)\in U_i\times U_i\ *\}\).
Consider the function \(F:{\mathbb {F}}_2^{m+k}\rightarrow {\mathbb {F}}_{2^m}\) in the form \(F(x,z)=\phi (z)I(x)\), where I(x) is the (m, m)-inverse function and \(\phi :{\mathbb {F}}_2^k\rightarrow {\mathbb {F}}_{2^m}\) is defined as
$$\begin{aligned} \phi (z)=\left\{ \begin{array}{ll} L(z)+c_i, &{} \text{ when } z\in U_i, \\ L(z)+c_0, &{} \text{ when } z\in {\mathbb {F}}_2^k\setminus \bigcup \limits _{i=1}^{m-k-1} U_i, \end{array} \right. \end{aligned}$$
(9)
and satisfies \(Rank\{\phi (z)|z\in {\mathbb {F}}_2^k\}=m\), \(L:{\mathbb {F}}_2^k\rightarrow {\mathbb {F}}_{2^m}\) is linear and \(c_i\ (0\le i \le m-k-1)\) are constants in \({\mathbb {F}}_{2^m}\). Then F is a differentially \(\Delta \)-uniform function with \(\Delta \le 2^{k+1}-4l+2\).
Proof
Let \(U_0={\mathbb {F}}_2^k\setminus \bigcup \nolimits _{i=1}^{m-k-1} U_i\). According to the conditions on \(\phi (z)\) and the fact that \(\{L(z)|z\in {\mathbb {F}}_2^k\}\) is a vector space, we have
$$\begin{aligned} m= & {} \mathrm{Rank}\{\phi (z)|z\in {\mathbb {F}}_2^k\}\\= & {} \mathrm{Rank}\left( \bigcup \limits _{i=0}^{m-k-1} \{L(z)+c_i|z\in U_i\}\right) \\\le & {} \mathrm{Rank}\left( \bigcup \limits _{i=0}^{m-k-1} \{L(z)+c_i|z\in {\mathbb {F}}_2^k\}\right) \\\le & {} \mathrm{Rank}(\mathrm{Span}(\{L(z)|z\in {\mathbb {F}}_2^{k}\}\cup \{c_i|0\le i \le m-k-1\})). \end{aligned}$$
The last step holds since for any i, \(\{L(z)+c_i|z\in {\mathbb {F}}_2^k\}\subseteq \mathrm{Span}(\{L(z)|z\in {\mathbb {F}}_2^{k}\}\cup c_i)\). It is clear that the span of a set does not change its rank, then
$$\begin{aligned} m\le & {} \mathrm{Rank}(\mathrm{Span}(\{L(z)|z\in {\mathbb {F}}_2^{k}\}\cup \{c_i|0\le i \le m-k-1\}))\\= & {} \mathrm{Rank}(\{L(z)|z\in {\mathbb {F}}_2^{k}\}\cup \{c_i|0\le i \le m-k-1\})\\= & {} \mathrm{Rank}(\{L(z)|z\in {\mathbb {F}}_2^k\}\cup \mathrm{Span}\{c_i|0\le i \le m-k-1\})\\= & {} \mathrm{Rank}\{L(z)|z\in {\mathbb {F}}_2^k\}+\mathrm{Rank}(\mathrm{Span}\{c_i|0\le i \le m-k-1\})\\&- \,\mathrm{Rank}(\{L(z)|z\in {\mathbb {F}}_2^k\}\cap \mathrm{Span}\{c_i|0\le i \le m-k-1\})\\\le & {} k+(m-k)-0=m. \end{aligned}$$
Thus the last inequality is an equality, we have
$$\begin{aligned}&\mathrm{Rank}\{L(z)|z\in {\mathbb {F}}_2^k\}=k, \end{aligned}$$
(10)
$$\begin{aligned}&\mathrm{Rank}(\mathrm{Span}\{c_i|0\le i \le m-k-1\})=m-k, \end{aligned}$$
(11)
and
$$\begin{aligned} \mathrm{Rank}(\{L(z)|z\in {\mathbb {F}}_2^k\}\cap \mathrm{Span}\{c_i|0\le i \le m-k-1\})=0. \end{aligned}$$
(12)
For one thing, \(c_i\ne 0\) because of (11) for any \(0\le i \le m-k-1\). Moreover, according to (12), we have \(c_i\notin \{L(z)|z\in {\mathbb {F}}_2^k\}\) for any \(0\le i \le m-k-1\), which means \(\phi (z)\) does not vanish for any \(z\in {\mathbb {F}}_2^k\). For another, assume that there exists \(z_{i_1}\ne z_{i_2}\in {\mathbb {F}}_2^k\) such that \(\phi (z_{i_1})=\phi (z_{i_2})\), then \(L(z_{i_1})+c_{i_1}=L(z_{i_2})+c_{i_2}\). If \(c_{i_1}=c_{i_2}\), notice that L(z) is a linear injection according to (10), then \(z_{i_1}=z_{i_2}\), a contradiction. If \(c_{i_1}\ne c_{i_2}\), then \(0\ne c_{i_1}+c_{i_2}\in \{L(z)|z\in {\mathbb {F}}_2^k\}\). According to (12), then \(c_{i_1}+c_{i_2}\notin \mathrm{Span}\{c_i|0\le i \le m-k-1\}\), a contradiction. Thus \(\phi (z)\) is an injection. Then we only need to verify the last condition in Proposition 3.1, that is, for any \(d\in {\mathbb {F}}_2^k\), \(t\in {\mathbb {F}}^*_{2^m}\),
$$\begin{aligned} \begin{array}{ll}2^{k+1}-4l+2\ge 2^{k+1}-2\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{\phi (z)t}{(t+\phi (z)+\phi (z+d))^2}\right) =1\right\} \\ \qquad - \, \#\{z\in {\mathbb {F}}_2^k|t=\phi (z)+\phi (z+d)\}+\#\{z\in {\mathbb {F}}_2^k|t=\phi (z)\}+\#\{z\in {\mathbb {F}}_2^k|t=\phi (z+d)\}.\end{array} \end{aligned}$$
(13)
Notice that \(U_i\)\((1\le i \le m-k-1)\) are disjoint sets satisfying \(\sum \nolimits _{i=1}^{m-k-1}\#U_i\le 2^{k-2}-l\), then \(\#U_0\ge 2^k-(2^{k-2}-l)= 3*2^{k-2}+l\), we have for any \(d\in {\mathbb {F}}_2^k\),
$$\begin{aligned} \#\{z|z,z+d\in U_0\}\ge 2^{k-1}+2l. \end{aligned}$$
(14)
The reason of (14) is
$$\begin{aligned}&\#\{z|z,z+d\in U_0\}\\&\quad =\#\left( \{z|z\in U_0\}\bigcap \{z|z+d\in U_0\}\right) \\&\quad =\#\{z|z\in U_0\}+\#\{z|z+d\in U_0\}-\#\left( \{z|z\in U_0\}\bigcup \{z|z+d\in U_0\}\right) \\&\quad \ge \#\{z|z\in U_0\}+\#\{z|z+d\in U_0\}-\#\{z|z\in {\mathbb {F}}_2^k\}\\&\quad = 2\#U_0-2^k\\&\quad \ge 2^{k-1}+2l. \end{aligned}$$
For any \(d\in {\mathbb {F}}_2^k\) and \(t\in {\mathbb {F}}^*_{2^m}\), if \(t+L(d)=0\), notice that \(\phi (z)=L(z)+c_0\) for any \(z\in U_0\), then we have
$$\begin{aligned}&\#\{z\in {\mathbb {F}}_2^k|t=\phi (z)+\phi (z+d)\}\\&\quad \ge \#\{z|z,z+d\in U_0,t=\phi (z)+\phi (z+d)\}\\&\quad =\#\{z|z,z+d\in U_0\}\\&\quad \ge 2^{k-1}+2l. \end{aligned}$$
Then (13) holds in this case since
$$\begin{aligned}&2^{k+1}-2\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{\phi (z)t}{(t+\phi (z)+\phi (z+d))^2}\right) =1\right\} \\&\qquad - \, \#\{z\in {\mathbb {F}}_2^k|t=\phi (z)+\phi (z+d)\}+\#\{z\in {\mathbb {F}}_2^k|t=\phi (z)\}+\#\{z\in {\mathbb {F}}_2^k|t=\phi (z+d)\}\\&\quad \le 2^{k+1}-2\times 0-\#\{z\in {\mathbb {F}}_2^k|t=\phi (z)+\phi (z+d)\}+1+1\\&\quad \le 2^{k+1}-(2^{k-1}+2l)+2\\&\quad \le 2^{k+1}-4l+2, \end{aligned}$$
the last step follows from \(0\le \#U\le 2^{k-2}-l\). Thus we only need to consider the case \(d\in {\mathbb {F}}_2^k\), \(t\in {\mathbb {F}}^*_{2^m}\) satisfying \(t+L(d)\ne 0\).
Since \(\mathrm{Rank}\{\phi (z)|z\in {\mathbb {F}}_2^k\}=m\) leads to \(\mathrm{Span}\{\phi (z)|z\in {\mathbb {F}}_2^k\}^\perp =\{0\}\), we have \(\gamma \notin \mathrm{Span}\{\phi (z)|z\in {\mathbb {F}}_2^k\}^\perp \) for any \(\gamma \in {\mathbb {F}}^*_{2^m}\). Hence, for any \(\gamma \in {\mathbb {F}}^*_{2^m}\), there exists \(\beta \in \mathrm{Span}\{\phi (z)|z\in {\mathbb {F}}_2^k\}\) such that \(\mathrm{Tr}_m(\gamma \beta )=1\). That is, for any \(\gamma \in {\mathbb {F}}^*_{2^m}\), there exists \(z\in {\mathbb {F}}_2^k\) such that \(\mathrm{Tr}_m(\phi (z)\gamma )=1\).
For any \(d\in {\mathbb {F}}_2^k\) and \(t\in {\mathbb {F}}^*_{2^m}\) satisfying \(t+L(d)\ne 0\), \(\frac{t}{(t+L(d))^2}\) does not vanish and the mappings \(z\rightarrow \frac{(L(z)+c_i)t}{(t+L(d))^2}\) are affine functions since L(z) is linear, where \(0\le i \le m-k-1\). Let us apply the observation above with \(\gamma =\frac{t}{(t+L(d))^2}\). Then there exists \(z_0\in {\mathbb {F}}_2^k\) such that \(\mathrm{Tr}_m\left( \frac{\phi (z_0)t}{(t+L(d))^2}\right) =1\). The rest of the proof is divided into two cases \(z_0\in U_0\) and \(z_0\notin U_0\).
Case 1\(z_0\in U_0\).
Then \(\phi (z_0)=L(z_0)+c_0\). Since there exists \(z\in {\mathbb {F}}_2^k\) such that \(\mathrm{Tr}_m\left( \frac{(L(z)+c_0)t}{(t+L(d))^2}\right) =1\) and \(z\rightarrow \frac{(L(z)+c_0)t}{(t+L(d))^2}\) is an affine function, we can apply Fact 1 and we deduce:
$$\begin{aligned} \#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z)+c_0)t}{(t+L(d))^2}\right) =1\right\} \ge 2^{k-1}. \end{aligned}$$
(15)
In this case, we will only consider those z satisfying \(z,z+d\in U_0\). Then
$$\begin{aligned} \mathrm{Tr}_m\left( \frac{\phi (z)t}{(t+\phi (z)+\phi (z+d))^2}\right) =\mathrm{Tr}_m\left( \frac{(L(z)+c_0)t}{(t+L(d))^2}\right) \end{aligned}$$
for these z.
Further, for any \(d\in {\mathbb {F}}_2^k\) and \(t\in {\mathbb {F}}^*_{2^m}\) satisfying \(t+L(d)\ne 0\), we have
$$\begin{aligned}&2^{k+1}-2\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{\phi (z)t}{(t+\phi (z)+\phi (z+d))^2}\right) =1\right\} \\&\qquad - \, \#\{z\in {\mathbb {F}}_2^k|t=\phi (z)+\phi (z+d)\}+\#\{z\in {\mathbb {F}}_2^k|t=\phi (z)\}+\#\{z\in {\mathbb {F}}_2^k|t=\phi (z+d)\}\\&\quad \le 2^{k+1}-2\#\left\{ z\bigg |z,z+d\in U_0,\mathrm{Tr}_m\left( \frac{\phi (z)t}{(t+\phi (z)+\phi (z+d))^2}\right) =1\right\} -0+1+1\\&\quad = 2^{k+1}-2\#\left\{ z\bigg |z,z+d\in U_0,\mathrm{Tr}_m\left( \frac{(L(z)+c_0)t}{(t+L(d))^2}\right) =1\right\} +2\\&\quad = 2^{k+1}-2\#\left( \{z|z,z+d\in U_0\}\bigcap \left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z)+c_0)t}{(t+L(d))^2}\right) =1\right\} \right) +2\\&\quad = 2^{k+1}-2\#\{z|z,z+d\in U_0\}-2\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z)+c_0)t}{(t+L(d))^2}\right) =1\right\} \\&\qquad + \, 2\#\left( \{z|z,z+d\in U_0\}\bigcup \left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z)+c_0)t}{(t+L(d))^2}\right) =1\right\} \right) +2\\&\quad \le 2^{k+1}-2\#\{z|z,z+d\in U_0\}-2\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z){+}c_0)t}{(t+L(d))^2}\right) {=}1\right\} + \, 2\#\{z\in {\mathbb {F}}_2^k\}+2\\&\quad \le 2^{k+1}-2(2^{k-1}+2l)-2^k+2^{k+1}+2\\&\quad = 2^{k+1}-4l+2. \end{aligned}$$
The last inequality follows from (14) and (15).
Case 2\(z_0\notin U_0\).
Then there exists \(1\le i \le m-k-1\) such that \(z_0\in U_i\). Thus \(\phi (z_0)=L(z_0)+c_i\), which means there exists \(z\in {\mathbb {F}}_2^k\) such that \(\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) =1\). Since \(z\rightarrow \frac{(L(z)+c_i)t}{(t+L(d))^2}\) is an affine function, we have
$$\begin{aligned} \#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) =1\right\} =2^{k-1}\ or\ 2^k, \end{aligned}$$
according to Fact 1. The rest of the proof is divided into two subcases.
Subcase 2.1\(\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) =1\right\} =2^{k-1}\).
Then
$$\begin{aligned} \#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) =0\right\} =2^{k-1}. \end{aligned}$$
This means
$$\begin{aligned}&\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z)+c_0)t}{(t+L(d))^2}\right) =1\right\} \\&\quad =\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) =\mathrm{Tr}_m\left( \frac{(c_0+c_i)t}{(t+L(d))^2}\right) +1\right\} \\&\quad = 2^{k-1} \end{aligned}$$
no matter constant \(\mathrm{Tr}_m\left( \frac{(c_0+c_i)t}{(t+L(d))^2}\right) +1\) equals 0 or 1.
Notice that both (14) and (15) also hold in this subcase, similar to Case 1, we only consider those z satisfying \(z,z+d\in U_0\). Then
$$\begin{aligned} \mathrm{Tr}_m\left( \frac{\phi (z)t}{(t+\phi (z)+\phi (z+d))^2}\right) =\mathrm{Tr}_m\left( \frac{(L(z)+c_0)t}{(t+L(d))^2}\right) \end{aligned}$$
for these z.
Thus for any \(d\in {\mathbb {F}}_2^{k}\) and \(t\in {\mathbb {F}}^*_{2^m}\) satisfying \(t+L(d)\ne 0\),
$$\begin{aligned}&2^{k+1}-2\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{\phi (z)t}{(t+\phi (z)+\phi (z+d))^2}\right) =1\right\} \\&\qquad - \, \#\{z\in {\mathbb {F}}_2^k|t=\phi (z)+\phi (z+d)\}+\#\{z\in {\mathbb {F}}_2^k|t=\phi (z)\}+\#\{z\in {\mathbb {F}}_2^k|t=\phi (z+d)\}\\&\quad \le 2^{k+1}-4l+2 \end{aligned}$$
for the same reason as in Case 1.
Subcase 2.2\(\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) =1\right\} =2^k\).
Then for any \(z\in {\mathbb {F}}_2^k\), \(\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) =1\). In this subcase, we will only consider those z satisfying \(z,z+d\in U_i\), then for these z, we have
$$\begin{aligned} \mathrm{Tr}_m\left( \frac{\phi (z)t}{(t+\phi (z)+\phi (z+d))^2}\right) =\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) . \end{aligned}$$
Since for any \(d\in {\mathbb {F}}_2^k\) appears at least 2l times in the multiset \(\{*\ z_1+z_2| (z_1,z_2)\in U_i\times U_i\ *\}\) for any \(U_i\), then there are at least 2l different \(z_1\in U_i\) such that \(z_2=z_1+d\in U_i\). This means for any \(d\in {\mathbb {F}}_2^k\),
$$\begin{aligned} \#\{z|z,z+d\in U_i\}\ge 2l. \end{aligned}$$
Thus for any \(d\in {\mathbb {F}}_2^k\) and \(t\in {\mathbb {F}}^*_{2^m}\) satisfying \(t+L(d)\ne 0\), we have
$$\begin{aligned}&2^{k+1}-2\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{\phi (z)t}{(t+\phi (z)+\phi (z+d))^2}\right) =1\right\} \\&\qquad - \, \#\{z\in {\mathbb {F}}_2^k|t=\phi (z)+\phi (z+d)\}+\#\{z\in {\mathbb {F}}_2^k|t=\phi (z)\}+\#\{z\in {\mathbb {F}}_2^k|t=\phi (z+d)\}\\&\quad \le 2^{k+1}-2\#\left\{ z\bigg |z,z+d\in U_i,\mathrm{Tr}_m\left( \frac{\phi (z)t}{(t+\phi (z)+\phi (z+d))^2}\right) =1\right\} -0+2\\&\quad = 2^{k+1}-2\#\left\{ z\bigg |z,z+d\in U_i,\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) =1\right\} +2\\&\quad = 2^{k+1}-2\#\{z|z,z+d\in U_i\}+2\\&\quad \le 2^{k+1}-4l+2. \end{aligned}$$
All in all, \(\Delta \le 2^{k+1}-4l+2\) according to Proposition 3.1. \(\square \)
Appendix B: \((2m - 2,m)\)-functions with low differential uniformity in the form \(F(x,z) = \phi (z)I(x)\) when m = 5,6,7
A differentially 14-uniform (8, 5)-function: Let \(F_{8,5}(x,z)=\phi (z)I(x)\), where I(x) is the inverse function on \({\mathbb {F}}_{2^5}\) and \(\phi :{\mathbb {F}}_2^3\rightarrow {\mathbb {F}}_{2^5}\) is presented by Table 1:
Table 1 Differentially 14-uniform (8, 5)-function where \(\alpha \) is a defining element of \({\mathbb {F}}_{2^5}\).
A differentially 30-uniform (10, 6)-function: Let \(F_{10,6}(x,z)=\phi (z)I(x)\), where I(x) is the inverse function on \({\mathbb {F}}_{2^6}\) and \(\phi :{\mathbb {F}}_2^4\rightarrow {\mathbb {F}}_{2^6}\) is presented by Table 2:
Table 2 Differentially 30-uniform (10, 6)-function where \(\alpha \) is a defining element of \({\mathbb {F}}_{2^6}\).
A differentially 58-uniform (12, 7)-function: Let \(F_{12,7}(x,z)=\phi (z)I(x)\), where I(x) is the inverse function on \({\mathbb {F}}_{2^7}\) and \(\phi :{\mathbb {F}}_2^5\rightarrow {\mathbb {F}}_{2^7}\) is presented by Table 3:
Table 3 Differentially 58-uniform (12, 7)-function where \(\alpha \) is a defining element of \({\mathbb {F}}_{2^7}\).