Skip to main content
Log in

On binary de Bruijn sequences from LFSRs with arbitrary characteristic polynomials

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We propose a construction of de Bruijn sequences by the cycle joining method from linear feedback shift registers (LFSRs) with arbitrary characteristic polynomial f(x). We study in detail the cycle structure of the set \(\varOmega (f(x))\) that contains all sequences produced by a specific LFSR on distinct inputs and provide a fast way to find a state of each cycle. This leads to an efficient algorithm to find all conjugate pairs between any two cycles, yielding the adjacency graph. The approach is practical to generate a large class of de Bruijn sequences up to order \(n \approx 20\). Many previously proposed constructions of de Bruijn sequences are shown to be special cases of our construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Broder A.: Generating random spanning trees. In: Proceedings of 30th Annual Symposium on Foundations of Computer Science, pp. 442–447 (1989).

  2. Bruckstein A.M., Etzion T., Giryes R., Gordon N., Holt R.J., Shuldiner D.: Simple and robust binary self-location patterns. IEEE Trans. Inf. Theory 58(7), 4884–4889 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang Z., Ezerman M.F., Ling S., Wang H.: The cycle structure of LFSR with arbitrary characteristic polynomial over finite fields. Cryptogr. Commun. (2017) (Online First 20 Dec 2017). https://doi.org/10.1007/s12095-017-0273-2.

  4. Chang Z., Ezerman M.F., Ling S., Wang H.: Construction of de Bruijn sequences from product of two irreducible polynomials. Cryptogr. Commun. 10(2), 251–275 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  5. de Bruijn N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946).

    MATH  Google Scholar 

  6. Ding C., Pei D., Salomaa A.: Chinese Remainder Theorem: Applications in Computing, Coding Cryptography. World Scientific Publishing, River Edge (1996).

    Book  MATH  Google Scholar 

  7. Etzion T., Lempel A.: Algorithms for the generation of full-length shift-register sequences. IEEE Trans. Inf. Theory 30(3), 480–484 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  8. Ezerman M.F., Fahreza A.A.: A binary de Bruijn sequence generator from product of irreducible polynomials. https://www.github.com/adamasstokhorst/debruijn.

  9. Fredricksen H.: A class of nonlinear de Bruijn cycles. J. Combin. Theory Ser. A 19(2), 192–199 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  10. Fredricksen H.: A survey of full length nonlinear shift register cycle algorithms. SIAM Rev. 24(2), 195–221 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  11. Golomb S.W.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1981).

    MATH  Google Scholar 

  12. Golomb S.W., Gong G.: Signal Design for Good Correlation: for Wireless Communication, Cryptography, and Radar. Cambridge University Press, New York (2004).

    MATH  Google Scholar 

  13. Hauge E.R., Helleseth T.: De Bruijn sequences, irreducible codes and cyclotomy. Discret. Math. 159(1–3), 143–154 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  14. Hauge E.R., Mykkeltveit J.: On the classification of de Bruijn sequences. Discret. Math. 148(13), 65–83 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  15. Hemmati F., Schilling D.L., Eichmann G.: Adjacencies between the cycles of a shift register with characteristic polynomial \((1+x)^{n}\). IEEE Trans. Comput. 33(7), 675–677 (1984).

    Article  MATH  Google Scholar 

  16. Knuth D.E.: Grayspspan. http://www-cs-faculty.stanford.edu/~uno/programs/grayspspan.w.

  17. Knuth D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2, 3rd edn. Addison-Wesley/Longman Publishing, Boston (1997).

  18. Knuth D.E.: The Art of Computer Programming, vol. 4A, Combinatorial Algorithms. Part 1. Addison-Wesley, Upple Saddle River (2011).

  19. Kurosawa K., Sato F., Sakata T., Kishimoto W.: A relationship between linear complexity and k-error linear complexity. IEEE Trans. Inf. Theory 46(2), 694–698 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  20. Li M., Lin D.: The adjacency graphs of LFSRs with primitive-like characteristic polynomials. IEEE Trans. Inf. Theory 63(2), 1325–1335 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  21. Li M., Lin D.: De Bruijn sequences, adjacency graphs and cyclotomy. IEEE Trans. Inf. Theory 64(4), 2941–2952 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  22. Li C., Zeng X., Helleseth T., Li C., Hu L.: The properties of a class of linear FSRs and their applications to the construction of nonlinear FSRs. IEEE Trans. Inf. Theory 60(5), 3052–3061 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  23. Li C., Zeng X., Li C., Helleseth T.: A class of de Bruijn sequences. IEEE Trans. Inf. Theory 60(12), 7955–7969 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  24. Li C., Zeng X., Li C., Helleseth T., Li M.: Construction of de Bruijn sequences from LFSRs with reducible characteristic polynomials. IEEE Trans. Inf. Theory 62(1), 610–624 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  25. Li M., Jiang Y., Lin D.: The adjacency graphs of some feedback shift registers. Des. Codes Cryptogr. 82(3), 695–713 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  26. Lidl R., Niederreiter H.: Finite Fields. Encyclopaedia of Mathematics and Its ApplicationsCambridge University Press, New York (1997).

    MATH  Google Scholar 

  27. Menezes A.J., Vanstone S.A., Oorschot P.C.V.: Handbook of Applied Cryptography, 1st edn. CRC Press, Boca Raton (1996).

    Book  MATH  Google Scholar 

  28. Mykkeltveit J.: A proof of Golomb’s conjecture for the de Bruijn graph. J. Combin. Theory Ser. B 13(1), 40–45 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  29. Nagarajan N., Pop M.: Sequence assembly demystified. Nat. Rev. Genet. 14(3), 157–167 (2013).

    Article  Google Scholar 

  30. Ralston A.: De Bruijn sequences—a model example of the interaction of discrete mathematics and computer science. Math. Mag. 55(3), 131–143 (1982).

    MathSciNet  MATH  Google Scholar 

  31. Spinsante S., Gambi E.: De Bruijn binary sequences and spread spectrum applications: a marriage possible? IEEE Trans. Aerosp. Electron. Syst. 28(11), 28–39 (2013).

    Article  Google Scholar 

  32. van Aardenne-Ehrenfest T., de Bruijn N.G.: Circuits and trees in oriented linear graphs. Simon Stevin 28, 203–217 (1951).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Adamas Aqsa Fahreza wrote the python implementation code. The work of Z. Chang is supported by the National Natural Science Foundation of China under Grant 61772476 and the Key Scientific Research Projects of Colleges and Universities in Henan Province under Grant 18A110029. Research Grants TL-9014101684-01 and MOE2013-T2-1-041 support the research carried out by M. F. Ezerman, S. Ling, and H. Wang. The authors gratefully acknowledge the advise and feedbacks from the editor and the reviewers. They led us to a better presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martianus Frederic Ezerman.

Additional information

Communicated by T. Helleseth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Z., Ezerman, M.F., Ling, S. et al. On binary de Bruijn sequences from LFSRs with arbitrary characteristic polynomials. Des. Codes Cryptogr. 87, 1137–1160 (2019). https://doi.org/10.1007/s10623-018-0509-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0509-y

Keywords

Mathematics Subject Classification

Navigation