Linear codes over \(\mathbb {F}_{q}[x]/(x^2)\) and \(GR(p^2,m)\) reaching the Griesmer bound

  • Jin Li
  • Aixian Zhang
  • Keqin Feng


We construct two series of linear codes C(G) over \(\mathbb {F}_{q}[x]/(x^2)\) and \(GR(p^2,m)\) reaching the Griesmer bound. Moreover, we consider the Gray images of C(G). The results show that the Gray images of C(G) over \(\mathbb {F}_{q}[x]/(x^2)\) are linear and also reach the Griesmer bound in some cases, and many of linear codes over \(\mathbb {F}_{q}\) we constructed have two Hamming (non-zero) weights.


Linear code Galois ring Homogeneous weight Gray map Griesmer bound 

Mathematics Subject Classification

94B05 11T24 



The work of J. Li was supported by National Natural Science Foundation of China(NSFC) under Grant 11501156 and the Anhui Provincial Natural Science Foundation under Grant 1508085SQA198. The work of A. Zhang was supported by NSFC under Grant 11401468. The work of K. Feng was supported by NSFC under Grant Nos. 11471178, 11571007 and the Tsinghua National Lab. for Information Science and Technology.


  1. 1.
    Greferath M., Schmidt S.E.: Gray isometries for finite chain rings and a nonlinear ternary \((36,3^{12},5)\) code. IEEE Trans. Inf. Theory 45(7), 2522–2524 (1999).CrossRefzbMATHGoogle Scholar
  2. 2.
    Griesmer J.H.: A bound for error correcting codes. IBM J. Res. Dev. 4(5), 532–542 (1960).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hammons Jr. A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \(\mathbb{Z}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994).CrossRefzbMATHGoogle Scholar
  4. 4.
    Klein A.: On codes meeting the Griesmer bound. Discret. Math. 274(1–3), 289–297 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Shiromoto K., Storme L.: A Griesmer bound for linear codes over finite quasi-Frobenius rings. Discret. Appl. Math. 128(1), 263–274 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Solomon G., Stiffler J.J.: Algebraically punctured cyclic codes. Inf. Control 8(2), 170–179 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tamari F.: A construction of some \([n, k, d]_q\) codes meeting the Griesmer bound. Discret. Math. 116(1–3), 269–287 (1993).CrossRefzbMATHGoogle Scholar
  8. 8.
    Voloch J.F., Walker J.L.: Homogeneous weights and exponential sums. Finite Fields Their Appl. 9(3), 310–321 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wan Z.: Lecture Notes on Finite Fields and Galois Rings. World Scientific, Singapore (2003).CrossRefGoogle Scholar
  10. 10.
    Yildiz B.: A combinatorial construction of the Gray map over Galois rings. Discret. Math. 309(10), 3408–3412 (2009).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsHefei University of TechnologyAnhuiChina
  2. 2.Department of Mathematical SciencesXian University of TechnologyShanxiChina
  3. 3.Department of Mathematical SciencesTsinghua UniversityBeijingChina

Personalised recommendations