Skip to main content
Log in

Pseudocodeword-free criterion for codes with cycle-free Tanner graph

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Iterative decoding and linear programming decoding are guaranteed to converge to the maximum-likelihood codeword when the underlying Tanner graph is cycle-free. Therefore, cycles are usually seen as the culprit of low-density parity-check codes. In this paper, we argue in the context of graph cover pseudocodeword that, for a code that permits a cycle-free Tanner graph, cycles have no effect on error performance as long as they are a part of redundant rows. Specifically, we characterize all parity-check matrices that are pseudocodeword-free for such class of codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Axvig N., Dreher D., Morrison K., Psota E., Perez L.C., Walker J.L.: Analysis of connections between pseudocodewords. IEEE Trans. Inform. Theory 55(9), 4099–4107 (2009).

    Article  MathSciNet  Google Scholar 

  2. Barahona F., Grötschel M.: On the cycle polytope of a binary matroid. J. Comb. Theory Ser. B 40, 40–62 (1986).

    Article  MathSciNet  Google Scholar 

  3. Etzion T., Trachtenberg A., Vardy A.: Which codes have cycle-free Tanner graphs? IEEE Trans. Inform. Theory 45(6), 2173–2181 (1999).

    Article  MathSciNet  Google Scholar 

  4. Feldman J., Wainwright M.J., Karger D.R.: Using linear programming to decode binary linear codes. IEEE Trans. Inform. Theory 51(3), 954–972 (2005).

    Article  MathSciNet  Google Scholar 

  5. Guichard D.: An Introduction to Combinatorics and Graph Theory. https://www.whitman.edu/mathematics/cgt_online/cgt.pdf.

  6. Kashyap N.: A decomposition theory for binary linear codes. IEEE Trans. Inform. Theory 54(7), 3035–3058 (2008).

    Article  MathSciNet  Google Scholar 

  7. Kelley C., Sridhara D.: Pseudocodewords of Tanner graphs. IEEE Trans. Inform. Theory 53(11), 4013–4038 (2007).

    Article  MathSciNet  Google Scholar 

  8. Koetter R., Li W.-C.W., Vontobel P.O., Walker J.: Characterizations of pseudo-codewords of (low-density) parity-check codes. Adv. Math. 213(1), 205–229 (2007).

    Article  MathSciNet  Google Scholar 

  9. Kositwattanarerk W., Matthews G.L.: Lifting the fundamental cone and enumerating the pseudocodewords of a parity-check code. IEEE Trans. Inform. Theory 57(2), 898–909 (2011).

    Article  MathSciNet  Google Scholar 

  10. Kou Y., Lin S., Fossorier M.P.C.: Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Trans. Inform. Theory 47(7), 2711–2736 (2001).

    Article  MathSciNet  Google Scholar 

  11. Kschischang F.R., Frey B.J., Loeliger H.-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory 47(2), 498–519 (2001).

    Article  MathSciNet  Google Scholar 

  12. Lechner G.: The effect of cycles on binary message-passing decoding of LDPC codes. In: Proc. Comm. Theory Workshop, Australia, IEEE (2010).

  13. MacKay D.J.C., Neal R.M.: Near Shannon limit performance of low density parity check codes. Electron. Lett. 32, 1645–1646 (1996).

    Article  Google Scholar 

  14. Richardson T., Shokrollahi A., Urbanke R.: Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inform. Theory 47(2), 619–637 (2001).

    Article  MathSciNet  Google Scholar 

  15. Seymour P.D.: Decomposition of regular matroids. J. Comb. Theory Ser. B 52, 305–359 (1980).

    Article  MathSciNet  Google Scholar 

  16. Tian T., Jones C.R., Villasenor J.D., Wesel R.D.: Selective avoidance of cycles in irregular LDPC code construction. IEEE Trans. Commun. 52, 1242–1247 (2004).

    Article  Google Scholar 

  17. Wiberg N.: Codes and decoding on general graphs. Ph.D. thesis, Linköping University, Linköping (1996).

  18. Xia S.-T., Fu F.-W.: Minimum pseudoweight and minimum pseudocodewords of LDPC codes. IEEE Trans. Inform. Theory 54, 480–485 (2008).

    Article  MathSciNet  Google Scholar 

  19. Xu J., Chen L., Djurdjevic I., Lin S., Abdel-Ghaffar K.: Construction of regular and irregular LDPC codes: geometry decomposition and masking. IEEE Trans. Inform. Theory 53, 121–134 (2007).

    Article  MathSciNet  Google Scholar 

  20. Zumbragel J., Skachek V., Flanagan M.F.: On the pseudocodeword redundancy of binary linear codes. IEEE Trans. Inform. Theory 58, 4848–4861 (2012).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Gretchen L. Matthews for her support while the author is at Clemson University, Patanee Udomkavanich for her advice, and the anonymous reviewers for their helpful suggestions and comments. This work is supported by the Thailand Research Fund under Grant TRG5880116 and the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wittawat Kositwattanarerk.

Additional information

Communicated by T. Etzion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kositwattanarerk, W. Pseudocodeword-free criterion for codes with cycle-free Tanner graph. Des. Codes Cryptogr. 86, 2791–2805 (2018). https://doi.org/10.1007/s10623-018-0476-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0476-3

Keywords

Mathematics Subject Classification

Navigation