Skip to main content
Log in

A ring-like cascade connection and a class of NFSRs with the same cycle structures

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Nonlinear feedback shift registers (NFSRs) are widely used in stream cipher designs. In this paper, we propose a variant of cascade connections of NFSRs, called ring-like cascade connections. It is shown that given an initial state of a ring-like cascade connection, each register outputs the sequence of the same period. Based on this configuration, a class of NFSRs with the same cycle structure can be derived. Moreover, inspired by this result, two more general types of NFSRs with the same cycle structures are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hell M., Johansson T., Maximov A., Meier W.: The Grain family of stream ciphers. In: Robshaw M., Billet O. (eds.) New Stream Cipher Designs: The eSTREAM Finalists. Lecture Notes in Computer Science, vol. 4986, pp. 179–190. Springer, New York (2008).

    Chapter  Google Scholar 

  2. Cannière C., Preneel B.: Trivium. In: Robshaw M., Billet O. (eds.) New Stream Cipher Designs: The eSTREAM Finalists. Lecture Notes in Computer Science, vol. 4986, pp. 244–266. Springer, New York (2008).

    Chapter  Google Scholar 

  3. Kjeldsen K.: On the cycle structure of a set of nonlinear shift registers with symmetric feedback functions. J. Comb. Theory Ser. A 20(2), 154–169 (1976).

    Article  MathSciNet  Google Scholar 

  4. Søreng J.: The periods of the sequences generated by some symmetric shift registers. J. Comb. Theory Ser. A 21(2), 164–187 (1976).

    Article  MathSciNet  Google Scholar 

  5. Søreng J.: Symmetric shift registers. Pac. J. Math. 85(1), 201–229 (1979).

    Article  MathSciNet  Google Scholar 

  6. Wang Z.X., Xu H., Qi W.F.: On the cycle structure of some nonlinear feedback shift registers. Chin. J. Electron. 23(4), 801–804 (2014).

    Google Scholar 

  7. Rozhkov M.I.: On some classes of nonlinear shift registers with the same cyclic structure. Discret. Math. Appl. 20(2), 127–155 (2010).

    Article  MathSciNet  Google Scholar 

  8. Green D.H., Dimond K.R.: Nonlinear product-feedback shift registers. Proc. IEE 117(4), 681–686 (1970).

    Google Scholar 

  9. Mykkeltveit J., Siu M.K., Tong P.: On the cycle structure of some nonlinear shift register sequences. Inf. Control 43(2), 202–215 (1979).

    Article  Google Scholar 

  10. Hu H., Gong G.: Periods on two kinds of nonlinear feedback shift registers with time varying feedback functions. Int. J. Found. Comput. Sci 22(6), 1317–1329 (2011).

    Article  MathSciNet  Google Scholar 

  11. Ma Z., Qi W.F., Tian T.: On the decomposition of an NFSR into the cascade connection of an NFSR into an LFSR. J. Complex 29(2), 173–181 (2013).

    Article  MathSciNet  Google Scholar 

  12. Zhang J.M., Qi W.F., Tian T., Wang Z.X.: Further Results on the Decomposition of an NFSR Into the Cascade Connection of an NFSR Into an LFSR. IEEE Trans. Inf. Theory 61(1), 645–654 (2015).

    Article  MathSciNet  Google Scholar 

  13. Tian T., Qi W.F.: On Decomposition of an NFSR into a Cascade Connection of Two Smaller NFSRs. Cryptol. ePrint Archive. http://eprint.iacr.org/2014/536.

  14. Golomb S.W.: Shift Register Sequences. Holden-Dan Inc, San Francisco (1967).

    MATH  Google Scholar 

  15. Lidl R., Niederreiter H.: Finite Fields. Addison-Wesley, Reading (1983).

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61672533, 61521003) and the National Cryptography Development Fund of China (Grant No. MMJJ20170103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Feng Qi.

Additional information

Communicated by A. Winterhof.

Appendices

Appendix

The proof for Lemma 3

Lemma 3

Let h be a Boolean function and \(\underline{a}\) an ultimately periodic sequence. Then \(\underline{b}=h\underline{a}\) is also ultimately periodic with \(\mathrm {per}(\underline{b})\mid \mathrm {per}(\underline{a})\) and \(k_2\le k_1\), where \(k_1\) and \(k_2\) denote the preperiods of \(\underline{a}\) and \(\underline{b}\), respectively.

Proof

Let \(\underline{a}'=L^{k_1}\underline{a}\) and \(\underline{b}'=L^{k_1}\underline{b}\). It is clear that \(\underline{a}'\) is periodic, and

$$\begin{aligned}\mathrm {per}(\underline{a}')=\mathrm {per}(\underline{a}), \mathrm {per}(\underline{b}')=\mathrm {per}(\underline{b}).\end{aligned}$$

Since \(\underline{b}'=h\underline{a}'\), it follows from

$$\begin{aligned}L^{\mathrm {per}(\underline{a}')}\underline{b}'=h(L^{\mathrm {per}(\underline{a}')}\underline{a}')=h\underline{a}'\end{aligned}$$

that

$$\begin{aligned}L^{\mathrm {per}(\underline{a}')}\underline{b}'=\underline{b}',\end{aligned}$$

which implies \(\underline{b}'\) is periodic, and \(\mathrm {per}(\underline{b}')\mid \mathrm {per}(\underline{a}')\), i.e.,

$$\begin{aligned}\mathrm {per}(\underline{b})\mid \mathrm {per}(\underline{a}).\end{aligned}$$

Moreover, since \(\underline{b}'=L^{k_1}\underline{b}\) is periodic, it is clear from the definition of preperiod that \(k_2\le k_1\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, XX., Tian, T. & Qi, WF. A ring-like cascade connection and a class of NFSRs with the same cycle structures. Des. Codes Cryptogr. 86, 2775–2790 (2018). https://doi.org/10.1007/s10623-018-0473-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0473-6

Keywords

Mathematics Subject Classification

Navigation