Alderson T.L., Bruen A.A., Silverman R.: Maximum distance separable codes and arcs in projective spaces. J. Combin. Theory Ser. A 114(6), 1101–1117 (2007).
MathSciNet
Article
Google Scholar
Ball S.: On sets of vectors of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc 14(3), 733–748 (2012).
MathSciNet
Article
Google Scholar
Ball S., De Beule J.: On sets of vectors of a finite vector space in which every subset of basis size is a basis II. Des. Codes Cryptogr 65(1–2), 5–14 (2012).
MathSciNet
Article
Google Scholar
Blokhuis A., Bruen A.A., Thas J.A.: Arcs in \(PG(n,q)\), MDS-codes and three fundamental problems of B. Segre—some extensions. Geom. Dedic. 35(1–3), 1–11 (1990).
MathSciNet
MATH
Google Scholar
Boonniyoma K., Jitman S.: Complementary dual subfield linear codes over finite fields. arXiv:1605.06827 [cs.IT] (2016).
Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. In: Pinto E.R., et al. (eds.) Coding Theory and Applications, CIM Series in Mathematical Sciences, pp. 97–105. Springer Verlag, (2014). and Adv. Math. Commun. 10(1), pp. 131–150 (2016).
Chen B., Liu H.: New constructions of MDS codes with complementary duals. arXiv: 1702.07831 (2017).
Dinh H.-Q., Nguyen B.-T., Sriboonchitta S.: Constacyclic codes over finite commutative semi-simple rings. Finite Fields Their Appl. 45, 1–18 (2017).
MathSciNet
Article
Google Scholar
Güneri C., Özbudak F., Özkaya B., Sacikara E., Sepasdar Z., Solé P.: Structure and performance of generalized quasi-cyclic codes. Finite Fields Their Appl. 47, 183–202 (2017).
MathSciNet
Article
Google Scholar
Güneri C., Özkaya B., Solé P.: Quasi-cyclic complementary dual codes. Finite Fields Their Appl. 42, 67–80 (2016).
MathSciNet
Article
Google Scholar
Grassl M., Gulliver T.A.: On self-dual MDS codes. Proc. ISIT 2008, 1954–1957 (2008).
Google Scholar
Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Proceedings of the Fourth Isle of Thorns Conference on Finite Geometries, Developments in Mathematics, vol. 3, pp. 201–246. Kluwer Academic Publishers (2000).
Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Clarendon Press, Oxford (1991).
MATH
Google Scholar
Jin L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–2847 (2017).
MathSciNet
MATH
Google Scholar
Kandasamy W.V., Smarandache F., Sujatha R., Duray R.R.: Erasure Techniques in MRD codes. Infinite Study (2012).
Li C.: Hermitian LCD codes from cyclic codes. Des. Codes Cryptogr. https://doi.org/10.1007/s10623-017-0447-0 (2017).
MathSciNet
Article
Google Scholar
Li C., Ding C., Li S.: LCD Cyclic codes over finite fields. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017).
MathSciNet
Article
Google Scholar
Li S., Li C., Ding C., Liu H.: Two families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017).
MathSciNet
MATH
Google Scholar
Liu X.X., Liu H.: Matrix-Product Complementary dual Codes, arXiv:1604.03774 (2016).
Massey J.L.: Linear codes with complementary duals. Discret. Math. 106–107, 337–342 (1992).
MathSciNet
Article
Google Scholar
MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. Elsevier, New York (1977).
MATH
Google Scholar
Mesnager S., Tang C., Qi Y.: Complementary dual algebraic geometry codes. IEEE Trans. Inf. Theory. https://doi.org/10.1109/TIT.2017.2766075. (2017).
MathSciNet
Article
Google Scholar
Sari M., Koroglu M..E.: On MDS Negacyclic LCD Codes. arXiv:1611.06371 (2016).
Segre B.: Curve razionali normali ek-archi negli spazi finiti. Ann. Mat. Pura Appl. 39, 357–379 (1955).
MathSciNet
Article
Google Scholar
Thas J.A.: Finite geometries, varieties and codes. In: Proceedings of the International Congress of Mathematicians, Extra vol. III, Berlin, pp. 397–408 (1998) (electronic).
Yang X., Massey J.L.: The condition for a cyclic code to have a complementary dual. J. Discret. Math. 126, 391–393 (1994).
MathSciNet
Article
Google Scholar