Skip to main content
Log in

On line covers of finite projective and polar spaces

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

An m-cover of lines of a finite projective space \(\mathrm{PG}(r,q)\) (of a finite polar space \({\mathcal {P}}\)) is a set of lines \({\mathcal {L}}\) of \(\mathrm{PG}(r,q)\) (of \({\mathcal {P}}\)) such that every point of \(\mathrm{PG}(r,q)\) (of \({\mathcal {P}}\)) contains m lines of \({\mathcal {L}}\), for some m. Embed \(\mathrm{PG}(r,q)\) in \(\mathrm{PG}(r,q^2)\). Let \({{\bar{{\mathcal {L}}}}}\) denote the set of points of \(\mathrm{PG}(r,q^2)\) lying on the extended lines of \({\mathcal {L}}\). An m-cover \({\mathcal {L}}\) of \(\mathrm{PG}(r,q)\) is an \((r-2)\)-dual m-cover if there are two possibilities for the number of lines of \({\mathcal {L}}\) contained in an \((r-2)\)-space of \(\mathrm{PG}(r,q)\). Basing on this notion, we characterize m-covers \({\mathcal {L}}\) of \(\mathrm{PG}(r,q)\) such that \({{\bar{{\mathcal {L}}}}}\) is a two-character set of \(\mathrm{PG}(r,q^2)\). In particular, we show that if \({\mathcal {L}}\) is invariant under a Singer cyclic group of \(\mathrm{PG}(r,q)\) then it is an \((r-2)\)-dual m-cover. Assuming that the lines of \({\mathcal {L}}\) are lines of a symplectic polar space \({\mathcal {W}}(r,q)\) (of an orthogonal polar space \({\mathcal {Q}}(r,q)\) of parabolic type), similarly to the projective case we introduce the notion of an \((r-2)\)-dual m-cover of symplectic type (of parabolic type). We prove that an m-cover \({\mathcal {L}}\) of \({\mathcal {W}}(r,q)\) (of \({\mathcal {Q}}(r,q)\)) has this dual property if and only if \({\bar{{\mathcal {L}}}}\) is a tight set of an Hermitian variety \({\mathcal {H}}(r,q^2)\) or of \({\mathcal {W}}(r,q^2)\) (of \({\mathcal {H}}(r,q^2)\) or of \({\mathcal {Q}}(r,q^2)\)). We also provide some interesting examples of \((4n-3)\)-dual m-covers of symplectic type of \({\mathcal {W}}(4n-1,q)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bamberg J., Kelly S., Law M., Penttila T.: Tight sets and $m$-ovoids of finite polar spaces. J. Comb. Theory Ser. A 114(7), 1293–1314 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruen A., Fisher J.C.: Spreads which are not dual spreads. Can. Math. Bull. 12(6), 801–803 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  4. Buekenhout F.: More geometry for Hering’s $3^{6}$ : SL(2, 13). In: Advances in Finite Geometries and Designs (Chelwood Gate, 1990), pp. 57–68. Oxford Science Publications, Oxford University Press, New York (1991).

  5. Cossidente A.: Some constructions on the Hermitian surface. Des. Codes Cryptogr. 51(2), 123–129 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. Cossidente A., King O.H.: On some maximal subgroups of unitary groups. Commun. Algebra 32(3), 989–995 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. Cossidente A., Pavese F.: On intriguing sets of finite symplectic spaces. Des. Codes Cryptogr. 86(5), 1161–1174 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  8. Cossidente A., Penttila T.: Hemisystems on the Hermitian surface. J. Lond. Math. Soc. (2) 72(3), 731–741 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. Cossidente A., Durante N., Marino G., Penttila T., Siciliano A.: The geometry of some two-character sets. Des. Codes Cryptogr. 46(2), 231–241 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. Cossidente A., Marino G., Penttila T.: The action of the group $G_2(q)< {{\rm PSU}} (6, q^2)$, $q$ even, and related combinatorial structures. J. Comb. Des. 21(2), 81–88 (2013).

    Article  MATH  Google Scholar 

  11. De Beule J., Metsch K.: On the smallest non-trivial tight sets in Hermitian polar spaces. Electron. J. Comb. 24(1), 1–62 (2017).

    MathSciNet  MATH  Google Scholar 

  12. De Wispelaere A.: Ovoids and spreads of finite classical generalized hexagons and applications. PhD thesis, Gent University (2005).

  13. Drudge K.: Extremal sets in projective and polar spaces. PhD thesis, The University of Western Ontario (1998).

  14. Drudge K.: On the orbits of Singer groups and their subgroups. Electron. J. Comb. 9(1) (2002).

  15. Dye R.H.: Partitions and their stabilizers for line complexes and quadrics. Ann. Mat. Pura Appl. 114(4), 173–194 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  16. Dye R.H.: Maximal subgroups of symplectic groups stabilizing spreads. J. Algebra 87, 493–509 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1985).

  18. Hirschfeld J.W.P.: Projective Geometries over Finite Fields. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1998).

  19. Huppert B.: Endliche Gruppen, I, Die Grundlehren der Mathematischen Wissenschaften, vol. 134. Springer, Berlin (1967).

    Google Scholar 

  20. Kleidman P., Liebeck M.: The Subgroup Structure of the Finite Classical Groups, vol. 129. London Mathematical Society Lecture Note SeriesCambridge University Press, Cambridge (1990).

    Book  MATH  Google Scholar 

  21. Lane-Harvard E.: New constructions of strongly regular graphs. Ph.D. thesis, Department of Mathematics, Colorado State University, Fort Collins, Colorado (2014).

  22. Mellinger K.E.: Classical mixed partitions. Discret. Math. 283(1–3), 267–271 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  23. Pavese F.: Geometric constructions of two-character sets. Discret. Math. 338(3), 202–208 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  24. Payne S.E.: Tight pointsets in finite generalized quadrangles. In: Eighteenth Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, 1987, Congr. Numer. vol. 60, pp. 243–260 (1987).

  25. Sved M.: Baer subspaces in the $n$-dimensional projective space. In: Combinatorial Mathematics, X (Adelaide, 1982). Lecture Notes in Mathematics, vol. 1036, pp. 375–391. Springer, Berlin (1983).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pavese.

Additional information

Communicated by G. Lunardon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cossidente, A., Pavese, F. On line covers of finite projective and polar spaces. Des. Codes Cryptogr. 87, 1985–2002 (2019). https://doi.org/10.1007/s10623-018-00599-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-00599-1

Keywords

Mathematics Subject Classification

Navigation