Skip to main content
Log in

Unbiased orthogonal designs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The notion of unbiased orthogonal designs is introduced as a generalization of unbiased Hadamard matrices, unbiased weighing matrices and quasi-unbiased weighing matrices. We provide upper bounds and several methods of construction for mutually unbiased orthogonal designs. As an application, mutually quasi-unbiased weighing matrices for various parameters are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agaian S.S.: Hadamard Matrices and Their Applications, vol. 1168. Lecture Notes in Mathematics. Springer, Berlin (1985).

  2. Araya M., Harada M., Suda S.: Quasi-unbiased Hadamard matrices and weakly unbiased Hadamard matrices: a coding-theoretic approach. Math. Comput. 304, 951–984 (2017).

    MathSciNet  MATH  Google Scholar 

  3. Best D., Kharaghani H., Ramp H.: Mutually unbiased weighing matrices. Des. Codes Cryptogr. 76, 237–256 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose R.C.: Strongly regular graphs, partial geometries and partially balanced designs. Pac. J. Math. 13, 389–419 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bush K.A.: Unbalanced Hadamard matrices and finite projective planes of even order. J. Comb. Theory Ser. A 11, 38–44 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  6. Butson A.T.: Generalized Hadamard matrices. Proc. Am. Math. Soc. 13, 894–898 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  7. Geramita A.V., Seberry J.: Orthogonal Designs. Quadratic Forms and Hadamard Matrices, vol. 45. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, Inc., New York (1979).

  8. Haemers W.H., Tonchev V.D.: Spreads in strongly regular graphs. Des. Codes Cryptogr. 8, 145–157 (1996).

    MathSciNet  MATH  Google Scholar 

  9. Holzmann W.H., Kharaghani H., Orrick W.: On the Real Unbiased Hadamard Matrices. Combinatorics and Graphs. Contemporary Mathematics, vol. 531. American Mathematical Society, Providence, RI (2010).

    MATH  Google Scholar 

  10. Kharaghani H.: New class of weighing matrices. Ars Comb. 19, 69–72 (1985).

    MathSciNet  MATH  Google Scholar 

  11. Kharaghani H., Sasani S., Suda S.: Mutually unbiased Bush-type Hadamard matrices and association schemes. Electron. J. Comb. 22, P3.10 (2015).

    MathSciNet  MATH  Google Scholar 

  12. LeCompte N., Martin W.J., Owens W.: On the equivalence between real mutually unbiased bases and a certain class of association schemes. Eur. J. Comb. 31, 1499–1512 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  13. Nozaki H., Suda S.: Weighing matrices and spherical codes. J. Algebra Comb. 42, 283–291 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  14. Robinson P.J.: Using product designs to construct orthogonal designs. Bull. Austral Math. Soc. 16, 297–305 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  15. Seberry J., Yamada M.: Hadamard Matrices, Sequences, and Block Designs. Contemporary Design Theory, pp. 431–560. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1992).

  16. Suda S.: A two-fold cover of strongly regular graphs with spreads and association schemes of class five. Des. Codes Cryptogr. 78, 463–471 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. van Dam E., Martin W., Muzychuk M.: Uniformity in association schemes and coherent configurations: cometric Q-antipodal schemes and linked systems. J. Comb. Theory Ser. A 120(7), 1401–1439 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. Wallis Jennifer Seberry: On the existence of Hadamard matrices. J. Comb. Theory Ser. A 21, 188–195 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  19. Wan Z.: Lectures on Finite Fields and Galois Rings. World Scientific Publishing Co., Inc., River Edge, NJ (2003).

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Hadi Kharaghani is supported by an NSERC Discovery Grant. Sho Suda is supported by JSPS KAKENHI Grant Number 15K21075. The authors wish to thank Darcy Best for showing the validity of Theorem 5.2 for \(t=1\) by computer computation, and Akihiro Munemasa and Pritta Etriana Putri for pointing our some errors, and the referees for their invaluable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Kharaghani.

Additional information

Communicated by J. H. Koolen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharaghani, H., Suda, S. Unbiased orthogonal designs. Des. Codes Cryptogr. 86, 1573–1588 (2018). https://doi.org/10.1007/s10623-017-0414-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0414-9

Keywords

Mathematics Subject Classification

Navigation