Skip to main content
Log in

Constructing permutation arrays from groups

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let M(nd) be the maximum size of a permutation array on n symbols with pairwise Hamming distance at least d. We use various combinatorial, algebraic, and computational methods to improve lower bounds for M(nd). We compute the Hamming distances of affine semilinear groups and projective semilinear groups, and unions of cosets of AGL(1, q) and PGL(2, q) with Frobenius maps to obtain new, improved lower bounds for M(nd). We give new randomized algorithms. We give better lower bounds for M(nd) also using new theorems concerning the contraction operation. For example, we prove a quadratic lower bound for \(M(n,n-2)\) for all \(n\equiv 2 \pmod 3\) such that \(n+1\) is a prime power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A factor of k is proper if it is smaller than k.

  2. Since f and g are bijections, they correspond to permutations.

  3. Recall that, for a permutation group G on a set X, the stabilizer of an element \(x\in X\) is the set of permutations \(\{g\in G : g(x)=x\}\).

  4. Note that \(N_{GV}(16,9)=97,579\).

References

  1. Bereg S., Morales L., Sudborough I.H.: Parallel and sequential partition and extension techniques. Manuscript, The University of Texas Dallas (2016).

  2. Bereg S., Morales L., Sudborough I.H.: Extending permutation arrays: improving MOLS bounds. Des. Codes Cryptogr. 83(3), 661–683 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  3. Blake I.F., Cohen G.D., Deza M.: Coding with permutations. Inform. Control 43(1), 1–19 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  4. Cameron P.: Permutation Groups. London Mathematical Society Student TextsCambridge University Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  5. Chu W., Colbourn C.J., Dukes P.: Constructions for permutation codes in powerline communications. Des. Codes Cryptogr. 32(1–3), 51–64 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  6. Colbourn C.J., Kløve T., Ling A.C.H.: Permutation arrays for powerline communication and mutually orthogonal latin squares. IEEE Trans. Inform. Theory 50(6), 1289–1291 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Clarendon Press, Oxford (1985).

    MATH  Google Scholar 

  8. Dixon J., Mortimer B.: Permutation Groups. Springer, New York (1996).

    Book  MATH  Google Scholar 

  9. Dummit D.S., Foote R.M.: Abstract Algebra, 2nd edn. Wiley, New York (1999).

    MATH  Google Scholar 

  10. Frankl P., Deza M.: On the maximum number of permutations with given maximal or minimal distance. J. Comb. Theory Ser. A 22(3), 352–360 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao F., Yang Y., Ge G.: An improvement on the Gilbert-Varshamov bound for permutation codes. IEEE Trans. Inform. Theory 59(5), 3059–3063 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. Herstein I.N.: Topics in Algebra, 2nd edn. Wiley, New York (1975).

    MATH  Google Scholar 

  13. Huczynska S.: Powerline communication and the 36 officers problem. Philos. Trans. R. Soc. Lond. A 364(1849), 3199–3214 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. Janiszczak I., Lempken W., Östergård P.R.J., Staszewski R.: Permutation codes invariant under isometries. Des. Codes Cryptogr. 75(3), 497–507 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  15. Janiszczak I., Staszewski R.: An improved bound for permutation arrays of length 10. Technical Report 4, Institute for Experimental Mathematics, University Duisburg-Essen (2008).

  16. Lidl R., Niederreiter H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  17. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland/Elsevier, Amsterdam (1977).

    MATH  Google Scholar 

  18. Passman D.: Sharp transitivity. In: Permutation Groups. Benjamin, Inc., New York (1968).

  19. Pavlidou N., Vinck A.H., Yazdani J., Honary B.: Power lines communications: state of the art and future trends. IEEE Commun. Mag. 34–40 (2003).

  20. Pless V.S., H W.C. (eds.): Handbook of Coding Theory. North-Holland/Elsevier, Amsterdam (1998).

    MATH  Google Scholar 

  21. Smith D.H., Montemanni R.: A new table of permutation codes. Des. Codes Cryptogr. 63(2), 241–253 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  22. Table of cosets. http://www.utdallas.edu/~sxb027100/cosets.

  23. Yang L., Chen K., Yuan L.: New constructions of permutation arrays. arXiv:abs/0801.3987 (2008).

  24. Yang L., Chen K., Yuan L.: New lower bounds on sizes of permutation arrays. arXiv:abs/0801.3986 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Bereg.

Additional information

Communicated by C. J. Colbourn.

Appendix

Appendix

Finite Fields Let \(n=p^k\) be a prime power. There is a field \(\mathbb {F}_n\) with n elements, unique up to isomorphism. We consider groups over the field \(\mathbb {F}_n\).

Groups The group AGL(1, n) consists of the affine linear transformations

$$\begin{aligned} AGL(1,n) = \{ax + b | a,b\in \mathbb {F}_n, a\not =0\}, \end{aligned}$$

where the group operation is function composition. This group is sharply \(2-\)transitive and has \(n(n-1)\) elements.

Denote the symbols of \(Z_{n+1}\) by \(0,1,2,\dots ,n-1,\infty \). The permutations of PGL(2, n) are \(g:x\rightarrow \frac{ax+b}{cx+d}\) on \(Z_{n+1}\) such that \(a,b,c,d\in GF(n), ad\ne bc, g(\infty )=a/c,g(-d/c)=\infty \) if \(c\ne 0\) and \(g(\infty )=\infty \) if \(c=0\). Then \(|PGL(2,n)|=(n+1)n(n-1)\).

Recall that \(n=p^k\). The group of affine semilinear polynomials \(A\Gamma L(1,n)\) arises as a semidirect product of AGL(1, n) with a cyclic group of order k. It is generated by iteratively composing the Frobenius automorphism \(x^p\) with the elements of AGL(1, n). Equivalently,

$$\begin{aligned} A\Gamma L(1,n) = \{ax^{p^i}+b \mid a,b\in \mathbb {F}_n, a\not =0, 0\le i < k\} \end{aligned}$$

This group has \(kn(n-1)\) elements.

The group of projective semilinear polynomials \(P\Gamma L(2,n)\) arises as a semidirect product of PGL(2, n) with a cyclic group of order k generated by the Frobenius automorphism. This group has \(k(n+1)n(n-1)\) elements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bereg, S., Levy, A. & Sudborough, I.H. Constructing permutation arrays from groups. Des. Codes Cryptogr. 86, 1095–1111 (2018). https://doi.org/10.1007/s10623-017-0381-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0381-1

Keywords

Mathematics Subject Classification

Navigation