Designs, Codes and Cryptography

, Volume 86, Issue 5, pp 1063–1083 | Cite as

Constructions of cyclic quaternary constant-weight codes of weight three and distance four

  • Liantao Lan
  • Yanxun Chang
  • Lidong Wang


A cyclic \((n,d,w)_q\) code is a cyclic q-ary code of length n, constant-weight w and minimum distance d. A cyclic \((n,d,w)_q\) code with the largest possible number of codewords is said to be optimal. Optimal nonbinary cyclic \((n,d,w)_q\) codes were first studied in our recent paper (Lan et al. in IEEE Trans Inf Theory 62(11):6328–6341, 2016). In this paper, we continue to discuss the constructions of optimal cyclic \((n,4,3)_q\) codes. We establish the connection between cyclic \((n,4,3)_{q}\) codes and \(q-1\) mutually orbit-disjoint cyclic (n, 3, 1) difference packings (briefly (n, 3, 1)-CDPs). For the case of \(q=4\), we construct three mutually orbit-disjoint (n, 3, 1)-CDPs by constructing a pair of strongly orbit-disjoint (n, 3, 1)-CDPs, which are obtained from Skolem-type sequences. As a consequence, we completely determine the number of codewords of an optimal cyclic \((n,4,3)_{4}\) code.


Constant-weight code Cyclic Optimal Cyclic difference packing Orbit-disjoint 

Mathematics Subject Classification




Supported by the NSFC under Grant 11431003 (Y. Chang), and the NSFC under Grant 11401582 and the NSFHB under Grant A2015507019 (L. Wang).


  1. 1.
    Abel R.J.R., Buratti M.: Some progress on (\(v,4,1\)) difference families and optical orthogonal codes. J. Comb. Theory (A) 106(1), 59–75 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baker C.A.: Extended Skolem sequences. J. Comb. Des. 3(5), 363–379 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baker C.A., Shalaby N.: Disjoint Skolem sequences and related disjoint structures. J. Comb. Des. 1(5), 329–345 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bao J., Ji L., Li Y., Wang C.: Orbit-disjoint regular (\(n, 3, 1\))-CDPs and their applications to multilength OOCs. Finite Fields Appl. 35(C), 139–158 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bermond J.C., Brouwer A.E., Germa A.: Triple Systems and Associated Differences, pp. 1–7. Stichting Mathematisch Centrum Zuivere Wiskunde, Amsterdam (1976).Google Scholar
  6. 6.
    Bitan S., Etzion T.: Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Trans. Inf. Theory 41(1), 77–87 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bose R.C.: On the construction of balanced incomplete block designs. Ann. Hum. Genet. 9(4), 353–399 (1939).zbMATHGoogle Scholar
  8. 8.
    Buratti M.: Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26(1), 111–125 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chang Y., Ji L.: Optimal \((4up,5,1)\) optical orthogonal codes. J. Comb. Des. 12(5), 346–361 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chang Y., Yin J.: Further results on optimal optical orthogonal codes with weight 4. Discret. Math. 279(1–3), 135–151 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chang Y., Fuji-Hara R., Miao Y.: Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans. Inf. Theory 49(5), 1283–1292 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cheng Q., Wan D.: On the list and bounded distance decodability of Reed-Solomon codes. SIAM J. Comput. 37(1), 195–207 (2007).Google Scholar
  13. 13.
    Cheng Q., Wan D.: Complexity of decoding positive rate Reed-Solomon codes. IEEE Trans. Inf. Theory 56(10), 5217–5222 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chien R.T.: Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes. IEEE Trans. Inf. Theory 10(4), 357–363 (1964).CrossRefzbMATHGoogle Scholar
  15. 15.
    Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis and applications. IEEE Trans. Inf. Theory 35(3), 595–604 (1989).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Davies R.O.: On Langford’s problem (II). Gaz. Math. 43, 253–255 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ding C.: Cyclic codes from the two-prime sequences. IEEE Trans. Inf. Theory 58(6), 3881–3891 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Forney G.D.: On decoding BCH codes. IEEE Trans. Inf. Theory 11(4), 549–557 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ge G., Yin J.: Constructions for optimal \((v,4,1)\) optical orthogonal codes. IEEE Trans. Inf. Theory 47(7), 2998–3004 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gilbert E.N.: Cyclically permutable error-correcting codes. IEEE Trans. Inf. Theory 9(3), 175–182 (1963).CrossRefzbMATHGoogle Scholar
  21. 21.
    Huang Y., Chang Y.: Two classes of optimal two-dimensional OOCs. Des. Codes Cryptogr. 63(3), 357–363 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRefzbMATHGoogle Scholar
  23. 23.
    Lan L., Chang Y., Wang L.: Cyclic constant-weight codes: upper bounds and new optimal constructions. IEEE Trans. Inf. Theory 62(11), 6328–6341 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Linek V., Mor S.: On partitions of \(\{1,\cdots, 2m+ 1\}\setminus \{k\}\) into differences \(d,\cdots, d+m-1\): extended Langford sequences of large defect. J. Comb. Des. 12(6), 421–442 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nguyen Q.A., Györfi L., Massey J.L.: Constructions of binary constant-weight cyclic codes and cyclically permutable codes. IEEE Trans. Inf. Theory 38(3), 940–949 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    O’Keefe E.S.: Verification of a conjecture of Th. Skolem. Math. Scand. 9, 80–82 (1961).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Prange E.: Some Cyclic Error-correcting Codes with Simple Decoding Algorithms. Technical Report TN-58-156. Air Force Cambridge Research Center, Cambridge, MA (1958).Google Scholar
  28. 28.
    Simpson J.E.: Langford sequence: perfect and hooked. Discret. Math. 44(1), 97–104 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Skolem T.: On certain distributions of integers in pairs with given differences. Math. Scand. 5, 57–68 (1957).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    van Lint J.H., Wilson R.M.: On the minimum distance of cyclic codes. IEEE Trans. Inf. Theory 32(32), 23–40 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Yin J.: A general construction for optimal cyclic packing designs. J. Comb. Theory (A) 97(2), 272–284 (2002).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute of MathematicsBeijing Jiaotong UniversityBeijingPeople’s Republic of China
  2. 2.Basic Subject Application and Development Research CenterChinese People’s Armed Police Force AcademyLangfangPeople’s Republic of China

Personalised recommendations