The order of the automorphism group of a binary \({\varvec{q}}\)-analog of the Fano plane is at most two

  • Michael Kiermaier
  • Sascha Kurz
  • Alfred Wassermann
Part of the following topical collections:
  1. Special Issue on Network Coding and Designs


The question if there exists a q-analog of the Fano plane is open since it was first posed in 1972. For a putative binary q-analog of the Fano plane all automorphisms of order greater than 4 had been excluded previously. Here, it is shown with theoretical and computational methods that the order of the automorphism group of a binary q-analog of the Fano plane is either trivial or of order 2. Moreover, some groups which had been excluded by computer search in Braun et al. (Eur J Comb 51:443–457, 2016) are ruled out as automorphism group by theoretic arguments.


Steiner triple systems q-Analogs of designs Fano plane Automorphism group 

Mathematics Subject Classification

51E20 05B07 05A30 


  1. 1.
    Berge C., Ray-Chaudhuri D.: Unsolved problems. In: Berge C., Ray-Chaudhuri D. (eds.) Hypergraph Seminar: Ohio State University 1972, no. 411 in Lecture Notes in Mathematics, pp. 278–287. Springer, Berlin (1974). doi:10.1007/BFb0066199.CrossRefGoogle Scholar
  2. 2.
    Braun M., Etzion T., Östergård P., Vardy A., Wassermann A.: Existence of \(q\)-analogs of Steiner systems. Forum Math. Pi 4, e7 (2016). doi:10.1017/fmp.2016.5.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Braun M., Kerber A., Laue R.: Systematic construction of \(q\)-analogs of \(t\)-\((v, k,\lambda )\)-designs. Des. Codes Cryptogr. 34(1), 55–70 (2005). doi:10.1007/s10623-003-4194-z.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Braun M., Kiermaier M., Kohnert A., Laue R.: Large sets of subspace designs. J. Comb. Theory Ser. A 147, 155–185 (2014).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Braun M., Kiermaier M., Nakić A.: On the automorphism group of a binary \(q\)-analog of the Fano plane. Eur. J. Comb. 51, 443–457 (2016). doi:10.1016/j.ejc.2015.07.014.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cohn H.: Projective geometry over \(\mathbb{F}_1\) and the Gaussian binomial coefficients. Am. Math. Mon. 111(6), 487–495 (2004). doi:10.2307/4145067.CrossRefMATHGoogle Scholar
  7. 7.
    Heden O., Sissokho P.A.: On the existence of a \((2,3)\)-spread in \({V}(7, 2)\). Ars Comb. 1101, 5336 (2011).Google Scholar
  8. 8.
    Kaski P.: Isomorph-free exhaustive generation of designs with prescribed groups of automorphisms. SIAM J. Discret. Math. 19(3), 664–690 (2005). doi:10.1137/S0895480104444788.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kiermaier M., Laue R.: Derived and residual subspace designs. Adv. Math. Commun. 9(1), 105–115 (2015). doi:10.3934/amc.2015.9.105.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kiermaier M., Pavčević M.O.: Intersection numbers for subspace designs. J. Comb. Des. 23(11), 463–480 (2015). doi:10.1002/jcd.21403.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kirkman T.P.: On a problem in combinatorics. Camb. Dublin Math. J. 2, 191–204 (1847).Google Scholar
  12. 12.
    Knuth D.E.: Dancing links. In: Davies J., Roscoe B., Woodcock J. (eds.) Millennial Perspectives in Computer Science: Proceedings of the 1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare. Palgrave (2000)Google Scholar
  13. 13.
    Kramer E.S., Mesner D.M.: \(t\)-Designs on hypergraphs. Discret. Math. 15(3), 263–296 (1976). doi:10.1016/0012-365X(76)90030-3.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mateva Z.T., Topalova S.T.: Line spreads of PG(5,2). J. Comb. Des. 17(1), 90–102 (2009). doi:10.1002/jcd.20198.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Miyakawa M., Munemasa A., Yoshiara S.: On a class of small \(2\)-designs over GF(q). J. Comb. Des. 3(1), 61–77 (1995). doi:10.1002/jcd.3180030108.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Nakić A., Pavčević M.O.: Tactical decompositions of designs over finite fields. Des. Codes Cryptogr. 77(1), 49–60 (2015). doi:10.1007/s10623-014-9988-7.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Suzuki H.: On the inequalities of \(t\)-designs over a finite field. Eur. J. Combin. 11(6), 601–607 (1990). doi:10.1016/S0195-6698(13)80045-5.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.8.3 (2016).

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations