Constructions of almost secure frameproof codes with applications to fingerprinting schemes

Abstract

This paper presents explicit constructions of fingerprinting codes. The proposed constructions use a class of codes called almost secure frameproof codes. An almost secure frameproof code is a relaxed version of a secure frameproof code, which in turn is the same as a separating code. This relaxed version is the object of our interest because it gives rise to fingerprinting codes of higher rate than fingerprinting codes derived from separating codes. The construction of almost secure frameproof codes discussed here is based on weakly biased arrays, a class of combinatorial objects tightly related to weakly dependent random variables.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Alon N., Goldreich O., Håstad J., Peralta R.: Simple constructions of almost \(k\)-wise independent random variables. Random Struct. Algorithms 3(3), 289–304 (1992).

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Alon N., Guruswami V., Kaufman T., Sudan M.: Guessing secrets efficiently via list decoding. ACM Trans. Algorithms 3(4), 1–16 (2007).

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Barg A., Blakley G.R., Kabatiansky G.: Digital fingerprinting codes: problem statements, constructions, identification of traitors. IEEE Trans. Inf. Theory 49(4), 852–865 (2003).

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Bierbrauer J., Schellwat H.: Almost independent and weakly biased arrays: efficient constructions and cryptologic applications. In: Proceedings of the International Cryptology Conference (CRYPTO). Lecture Notes in Computer Science (LNCS), vol. 1880, pp. 533–544. Santa Barbara, CA (2000).

  5. 5.

    Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. In: Proceedings of the International Cryptology Conference (CRYPTO). Lecture Notes in Computer Science (LNCS), vol. 963, pp. 452–465. Santa Barbara, CA (1995).

  6. 6.

    Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998).

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Chor B., Fiat A., Naor M.: Tracing traitors. In: Proceedings of the International Cryptology Conference (CRYPTO). Lecture Notes in Computer Science (LNCS), vol. 839, pp. 480–491. Santa Barbara, CA (1994).

  8. 8.

    Chor B., Fiat A., Naor M., Pinkas B.: Tracing traitors. IEEE Trans. Inf. Theory 46(3), 893–910 (2000).

    Article  MATH  Google Scholar 

  9. 9.

    Chor B., Goldreich O., Hasted J., Freidmann J., Rudich S., Smolensky R.: The bit extraction problem or \(t\)-resilient functions. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pp. 396–407. Singer Island, FL (1984).

  10. 10.

    Cohen G.D., Encheva S., Schaathun H.G.: On separating codes. Technical Report 2001D003, ENST, Paris, France (2001).

  11. 11.

    Cohen G.D., Schaathun H.G.: Asymptotic overview on separating codes. Technical Report 248. Department of Informatics, University of Bergen, Norway (2003).

  12. 12.

    Cohen G.D., Schaathun H.G.: Upper bounds on separating codes. IEEE Trans. Inf. Theory 50(6), 1291–1294 (2004).

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Fernández M., Kabatiansky G., Moreira J.: Almost separating and almost secure frameproof codes. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 2696–2700. Saint Petersburg, Russia (2011).

  14. 14.

    Forney G.D.: Concatenated codes. Technical Report 440, Research Laboratory of Electronics, MIT, Cambridge, MA (1966).

  15. 15.

    Friedman A.D., Graham R.L., Ullman J.D.: Universal single transition time asynchronous state assignments. IEEE Trans. Comput. C–18(6), 541–547 (1969).

    Article  Google Scholar 

  16. 16.

    Körner J., Simonyi G.: Separating partition systems and locally different sequences. SIAM J. Discret. Math. (SIDMA) 1(3), 355–359 (1988).

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Moreira J., Fernández M., Kabatiansky G.: Constructions of almost secure frameproof codes based on small-bias probability spaces. In: Proceedings of the International Workshop on Security (IWSEC). Lecture Notes in Computer Science (LNCS), vol. 8231, pp. 53–67. Okinawa, Japan (2013).

  18. 18.

    Moreira J., Fernández M., Kabatiansky G.: Almost separating and almost secure frameproof codes over \(q\)-ary alphabets. Des. Codes Cryptogr. 80(1), 11–28 (2016).

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Naor J., Naor M.: Small-bias probability spaces: efficient constructions and applications. SIAM J. Comput. (SICOMP) 22(4), 838–856 (1993).

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Pinsker M.S., Sagalovich Y.L.: Lower bound on the cardinality of code of automata’s states. Probl. Inf. Transm. 8(3), 59–66 (1972).

    Google Scholar 

  21. 21.

    Sagalovich Y.L.: Completely separating systems. Probl. Inf. Transm. 18(2), 140–146 (1982).

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Sagalovich Y.L.: Separating systems. Probl. Inf. Transm. 30(2), 105–123 (1994).

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Staddon J.N., Stinson D.R., Wei R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049 (2001).

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Stinson D.R., van Trung T., Wei R.: Secure frameproof codes, key distribution patterns, group testing algorithms and related structures. J. Stat. Plan. Inference 86(2), 595–617 (2000).

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Tardos G.: Optimal probabilistic fingerprint codes. J. ACM 55(2), 1–24 (2008).

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Vazirani U.V.: Randomness, adversaries and computation. Ph.D. thesis, Department of Electrical Engineering and Computer Science, University of California, Berkeley (1986).

  27. 27.

    Vazirani U.V., Vazirani V.V.: Efficient and secure pseudo-random number generation. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pp. 458–463. Singer Island, FL (1984).

Download references

Acknowledgements

We would like to thank the anonymous reviewers, whose valuable comments helped to improve the contents and presentation of this paper. M. Fernández has been supported by the Spanish Government through projects Consolider Ingenio 2010 CSD2007-00004 “ARES”, TEC2011-26491 “COPPI”, and TEC2015-68734-R (MINECO/FEDER) “ANFORA”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José Moreira.

Additional information

The material in this paper was presented in part at the 2013 International Workshop on Security (IWSEC), November 2013, Okinawa, Japan [17].

Communicated by C. J. Colbourn.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moreira, J., Fernández, M. & Kabatiansky, G. Constructions of almost secure frameproof codes with applications to fingerprinting schemes. Des. Codes Cryptogr. 86, 785–802 (2018). https://doi.org/10.1007/s10623-017-0359-z

Download citation

Keywords

  • Separating code
  • Secure frameproof code
  • Fingerprinting
  • Traitor tracing

Mathematics Subject Classification

  • 94B60
  • 94B65