Advertisement

Designs, Codes and Cryptography

, Volume 86, Issue 4, pp 771–784 | Cite as

The primitive idempotents and weight distributions of irreducible constacyclic codes

  • Fengwei LiEmail author
  • Qin Yue
Article

Abstract

Let \({\mathbb {F}}_q\) be a finite field with q elements such that \(l^v||(q^t-1)\) and \(\gcd (l,q(q-1))=1\), where lt are primes and v is a positive integer. In this paper, we give all primitive idempotents in a ring \(\mathbb F_q[x]/\langle x^{l^m}-a\rangle \) for \(a\in {\mathbb {F}}_q^*\). Specially for \(t=2\), we give the weight distributions of all irreducible constacyclic codes and their dual codes of length \(l^m\) over \({\mathbb {F}}_q\).

Keywords

Finite field Primitive idempotent Constacyclic code 

Mathematics Subject Classification

11T71 94B05 

Notes

Acknowledgements

The paper is supported by National Natural Science Foundation of China (No. 11601475) and Foundation of Science and Technology on Information Assurance Laboratory (No. KJ-15-009).

References

  1. 1.
    Arora S.K., Batra S., Cohen S.D., Pruthi M.: The primitive idempotents of a cyclic group algebra. Southeast Asian Bull. Math. 26, 197–208 (2002).MathSciNetzbMATHGoogle Scholar
  2. 2.
    Arora S.K., Pruthi M.: Minimal cyclic codes of length \(2p^n\). Finite Fields Appl. 5, 177–187 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Batra S., Arora S.K.: Some cyclic codes of length \(2p^n\). Des. Codes Cryptogr. 61, 41–69 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bakshi G.K., Raka M.: Minimal cyclic codes of length \(p^nq\). Finite Fields Appl. 9, 432–448 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen B., Fan Y., Lin L., Liu H.: Constacyclic codes over finite fields. Finite Fields Appl. 18, 1217–1231 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen B., Liu H., Zhang G.: A class of minimal cyclic codes over finite fields. Des. Codes Cryptogr. 74, 285–300 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ferraz R.A., Polcino Milies C.: Idempotents in group algebras and minimal abelian codes. Finite Fields Appl. 13, 382–393 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (2008).zbMATHGoogle Scholar
  9. 9.
    Lint J.H.: Introduction to Coding Theory. Springer, Berlin (2003).zbMATHGoogle Scholar
  10. 10.
    Li F., Yue Q., Li C.: The minimum Hamming distances of irreducible cyclic codes. Finite Field Appl. 29, 225–242 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li F., Yue Q., Li C.: The irreducible cyclic codes of length \(4p^n\) and \(8p^n\). Finite Field Appl. 34, 208–234 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes. NorthHolland, Amsterdam (1977).zbMATHGoogle Scholar
  13. 13.
    Pruthi M.: Cyclic codes of length \(2^m\). Proc. Indian Acad. Sci. Math. Sci. 111, 371–379 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pruthi M., Arora S.K.: Minimal cyclic codes of prime power length. Finite Fields Appl. 3, 99–113 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sharma A., Bakshi G.K., Dumir V.C., Raka M.: Irreducible cyclic codes of length \(2^n\). Ars Combin. 86, 133–146 (2008).MathSciNetzbMATHGoogle Scholar
  16. 16.
    Singh R., Pruthi M.: Primitive idempotents of irreducible quadratic residue cyclic codes of length \(p^nq^m\). Int. J. Algebra 5, 285–294 (2011).MathSciNetzbMATHGoogle Scholar
  17. 17.
    Wan Z.: Lectures on Finite Fields and Galois Rings. World Scientific, Singapore (2003).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsZaozhuang UniversityZaozhuangPeople’s Republic of China
  2. 2.State Key Laboratory of CryptologyBeijingPeople’s Republic of China
  3. 3.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Department of MathematicsNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations