Abstract
In this paper we investigate multi-point Algebraic–Geometric codes associated to the GK maximal curve, starting from a divisor which is invariant under a large automorphism group of the curve. We construct families of codes with large automorphism groups.
This is a preview of subscription content, access via your institution.
References
Castellanos A.S., Tizziotti G.C.: Two-point AG Codes on the GK maximal curves. IEEE Trans. Inf. Theory 62(2), 681–686 (2016).
Duursma I.: Two-point coordinate rings for GK-curves. IEEE Trans. Inf. Theory 57(2), 593–600 (2011).
Eid A., Hasson H., Ksir A., Peachey J.: Suzuki-invariant codes from the Suzuki curve. Des. Codes Cryptogr. 81, 413–425 (2016).
Fanali S., Giulietti M.: One-point AG codes on the GK maximal curves. IEEE Trans. Inf. Theory 56(1), 202–210 (2010).
Giulietti M., Korchmáros G.: On automorphism groups of certain Goppa codes. Des. Codes Cryptogr. 48, 177–190 (2008).
Giulietti M., Korchmáros G.: A new family of maximal curves over a finite field. Math. Ann. 343, 229–245 (2009).
Goppa V.D.: Codes on algebraic curves. Dokl. Akad. NAUK SSSR 259, 1289–1290 (1981).
Goppa V.D.: Algebraic-geometric codes. Izv. Akad. NAUK SSSR 46, 75–91 (1982).
Hansen J.P.: Codes on the Klein quartic, ideals and decoding. IEEE Trans. Inf. Theory 33(6), 923–925 (1987).
Heegard C., Little J., Saints K.: Systematic encoding via Gröbner bases for a class of algebraic-geometric Goppa codes. IEEE Trans. Inf. Theory 41, 1752–1761 (1995).
Hirschfeld J.W.P.: Projective Geometries over Finite Fields, 2nd edn. Oxford University Press, Oxford (1998).
Joyner D.: An error-correcting codes package. SIGSAM Commun. Comput. Algebra 39(2), 65–68 (2005).
Joyner D., Ksir A.: Automorphism groups of some AG codes. IEEE Trans. Inf. Theory 52(7), 3325–3329 (2006).
Korchmáros G., Speziali P.: Hermitian codes with automorphism group isomorphic to \(PGL(2,q)\) with \(q\) odd. Finite Fields Appl. 44, 1–17 (2017).
Matthews G.L.: Codes from the Suzuki function field. IEEE Trans. Inf. Theory 50(12), 3298–3302 (2004).
Matthews G.L.: Weierstrass semigroups and codes from a quotient of the Hermitian curve. Des. Codes Cryptogr. 37, 473–492 (2005).
Montanucci M., Zini G.: Some Ree and Suzuki curves are not quotients of the Hermitian curve (submitted). ArXiv: 1511.05353.
Pretzel O.: Codes and Algebraic Curves. Oxford Lecture Series in Mathematics and Its Applications, vol. 8. The Clarendon Press/Oxford University Press, New York (1998).
Stichtenoth H.: A note on Hermitian codes over \(GF(q^2)\). IEEE Trans. Inf. Theory 34(5), 1345–1348 (1988).
Stichtenoth H.: Algebraic function fields and codes. In: Graduate Texts in Mathematics, vol. 254. Springer, Berlin (2009).
Tiersma H.J.: Remarks on codes from Hermitian curves. IEEE Trans. Inf. Theory 33(4), 605–609 (1987).
Tsfasman M.A., Vladut S.G.: Algebraic-Geometric Codes. Kluwer, Amsterdam (1991).
Xing C.P., Chen H.: Improvements on parameters of one-point AG codes from Hermitian curves. IEEE Trans. Inf. Theory 48(2), 535–537 (2002).
Xing C.P., Ling S.: A class of linear codes with good parameters from algebraic curves. IEEE Trans. Inf. Theory 46(4), 1527–1532 (2000).
Yang K., Kumar P.V.: On the true minimum distance of Hermitian codes. In: Coding Theory and Algebraic Geometry. Lecture Notes in Mathematics, vol. 1518, pp. 99–107. Springer, Berlin (1992).
Acknowledgements
This research was partially supported by Ministry for Education, University and Research of Italy (MIUR) (Project PRIN 2012 ”Geometrie di Galois e strutture di incidenza”—Prot. N. 2012XZE22K_005) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G. Korchmaros.
Rights and permissions
About this article
Cite this article
Bartoli, D., Montanucci, M. & Zini, G. Multi point AG codes on the GK maximal curve. Des. Codes Cryptogr. 86, 161–177 (2018). https://doi.org/10.1007/s10623-017-0333-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-017-0333-9