Designs, Codes and Cryptography

, Volume 85, Issue 3, pp 425–436 | Cite as

On symmetric BIBDs with the same 3-concurrence

Article
  • 203 Downloads

Abstract

In a symmetric balanced incomplete block design (SBIBD), every pair of points appears \(\lambda \) times among all blocks. In this paper, we study the 3-concurrence of an SBIBD, i.e., the number of times that each triple of points appears. We try to find two distinct SBIBDs whose 3-concurrences are exactly the same. Existence of such a pair would give a non-trivial tight relative 3-design on two shells in the binary Hamming association scheme H(n, 2). We prove that such pairs of designs do not exist when \(\lambda =1,2\) or the block size is at least \((\lambda -1)(\lambda ^2-2)+2\). We also give criteria to check the existence of such pairs when the designs are given. For \(\lambda =3\), our computational results show the non-existence of such pairs with only two cases left unknown: (45,12,3) and (71,15,3).

Keywords

Symmetric BIBD 3-Concurrence Johnson graph 

Mathematics Subject Classification

05B05 

References

  1. 1.
    Bannai E., Bannai E., Zhu Y.: Relative t-designs in binary Hamming association scheme H(n,2). Des. Codes Cryptogr. (to appear) (2017).Google Scholar
  2. 2.
    Brouwer A.E., Haemers W.H.: Distance-regular graphs. In: Spectra of Graphs, pp. 177–185. Springer, New York (2012).Google Scholar
  3. 3.
    Bruck R.H., Ryser H.J.: The nonexistence of certain finite projective planes. Can. J. Math. 1(1), 88–93 (1949).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chowla S., Ryser H.J.: Combinatorial problems. Can. J. Math. 2(1), 93–99 (1950).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dembowski P.: Finite Geometries. Springer, Berlin (1968).CrossRefMATHGoogle Scholar
  6. 6.
    Denniston R.: Enumeration of symmetric designs (25, 9, 3). N.-Holl. Math. Stud. 65, 111–127 (1982).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gibbons P.B.: Computing techniques for the construction and analysis of block designs. Ph.D. Thesis, University of Toronto (1976).Google Scholar
  8. 8.
    Haemers W.H.: Eigenvalue techniques in design and graph theory. Ph.D. Thesis, Mathematisch centrum Amsterdam (1980).Google Scholar
  9. 9.
    Ionin Y.J., Shrikhande M.S.: Combinatorics of Symmetric Designs. Cambridge University Press, Cambridge (2006).CrossRefMATHGoogle Scholar
  10. 10.
    Mathon R., Spence E.: On 2-(45, 12, 3) designs. J. Comb. Des. 4(3), 155–175 (1996).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Rukavina S.: Some new triplanes of order twelve. Glas. Mat. 36(1), 105–125 (2001).MathSciNetMATHGoogle Scholar
  12. 12.
    Spence E.: Symmetric 2-designs. http://www.maths.gla.ac.uk/.
  13. 13.
    Spence E.: A complete classification of symmetric (31, 10, 3) designs. Des. Codes Cryptogr. 2(2), 127–136 (1992).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Stinson D.R.: Combinatorial designs: constructions and analysis. Sigact News 39(4), 17–21 (2008).CrossRefGoogle Scholar
  15. 15.
    Wan Z.: Design Theory. World Scientific, Singapore (2009).CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Mathematical SciencesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations