Skip to main content
Log in

Linearly embeddable designs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A residual design \(\mathcal{{D}}_B\) with respect to a block B of a given design \({\mathcal{{D}}}\) is defined to be linearly embeddable over GF(p) if the p-ranks of the incidence matrices of \({\mathcal{{D}}}_B\) and \({\mathcal{{D}}}\) differ by one. A sufficient condition for a residual design to be linearly embeddable is proved in terms of the minimum distance of the linear code spanned by the incidence matrix, and this condition is used to show that the residual designs of several known infinite classes of designs are linearly embeddable. A necessary condition for linear embeddability is proved for affine resolvable designs and their residual designs. As an application, it is shown that a residual design of the classical affine design of the planes in AG \((3,2^2)\) admits two nonisomorphic embeddings over GF(2) that give rise to the only known counterexamples to Hamada’s conjecture over a field of non-prime order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assmus Jr. E.F., Key J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992).

    Book  MATH  Google Scholar 

  2. Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  3. Blake I.F., Mullin R.C.: An Introduction to Algebraic and Combinatorial Coding Theory. Academic Press, New York (1976).

    MATH  Google Scholar 

  4. Bose R.C.: Graphs and Designs. Edizioni Cremonese, Rome (1973).

    MATH  Google Scholar 

  5. Clark D., Jungnickel D., Tonchev V.D.: Affine geometry designs, polarities, and Hamada’s conjecture. J. Comb. Theory Ser. A 118, 231–239 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. Dillon J.F., Schatz J.R.: Block designs with the symmetric difference property. In: Ward R.L. (ed.) Proceedings of the NSA Mathematical Sciences Meetings, pp. 159–164. U.S. Government Printing Office, Washington, D.C. (1987).

  7. Hall Jr. M.: Combinatorial Theory. Wiley, New York (1986).

    MATH  Google Scholar 

  8. Hamada N.: On the \(p\)-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error-correcting codes. Hiroshima Math. J. 3, 153–226 (1973).

    MathSciNet  MATH  Google Scholar 

  9. Hamada N.: On the geometric structure and \(p\)-rank of affine triple system derived from a nonassociative Moufang loop with the maximum associative center. J. Comb. Theory A 30, 285–297 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  10. Harada M., Lam C., Tonchev V.D.: Symmetric (4,4)-nets and generalized Hadamard matrices over groups of order 4. Des. Codes Cryptogr. 34, 71–87 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  11. Helgert H.J., Stinaff R.D.: Minimum distance bounds for binary linear codes. IEEE Trans. Inf. Theory IT–19, 344–356 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  12. Hill R., Newton D.E.: Optimal ternary codes. Des. Codes Cryptogr. 2, 137–157 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  13. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  14. Ionin Y.J., Shrikhande M.S.: Combinatorics of Symmetric Designs. Cambridge University Press, Cambridge (2006).

    Book  MATH  Google Scholar 

  15. Jungnickel D.: The number of designs with classical parameters grows exponentially. Geom. Dedicata 16, 167–178 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  16. Jungnickel D., Tonchev V.D.: Polarities, quasi-symmetric designs, and Hamada’s conjecture. Des. Codes Cryptogr. 51, 131–140 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  17. Jungnickel D., Tonchev V.D.: Exponential number of quasi-symmetric SDP designs and codes meeting the Grey–Rankin bound. Des. Codes Cryptogr. 1, 247–253 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  18. Kantor W.M.: Characterizations of finite projective and affine spaces. Can. J. Math. 21, 64–75 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  19. Kantor W.M.: Symplectic groups, symmetric designs and line ovals. J. Algebra 33, 43–58 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  20. Kantor W.M.: Exponential numbers of two-weight codes, difference sets and symmetric designs. Discret. Math. 46, 95–98 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  21. Kimberley M.E.: On the construction of certain Hadamard designs. Math. Z. 119, 41–59 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  22. Lam C., Lam S., Tonchev V.D.: Bounds on the number of affine, symmetric, and Hadamard designs and matrices. J. Comb. Theory Ser. A 92, 186–196 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  23. Mann H.B.: A note on balanced incomplete block designs. Ann. Math. Stat. 40, 679–680 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  24. Mavron V.C., McDonough T.P., Tonchev V.D.: On affine designs and Hadamard designs with line spreads. Discret. Math. 308, 2742–2750 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  25. Rudolph L.D.: A class of majority-logic decodable codes. IEEE Trans. Inf. Theory 13, 305–307 (1967).

    Article  MATH  Google Scholar 

  26. Shrikhande M.S.: Quasi-symmetric designs. In: Colbourn C.J., Dinitz J.F. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 578–582. Chapman & Hall/CRC, Boca Raton (2007).

    Google Scholar 

  27. Shrikhande S.S.: On the non-existence of affine resolvable balanced incomplete block designs. Sankhya 11, 185–186 (1951).

    MathSciNet  MATH  Google Scholar 

  28. Tonchev V.D.: Quasi-symmetric 2-(31,7,7) designs and a revision of Hamada’s conjecture. J. Comb. Theory A 42, 104–110 (1986).

    Article  MATH  Google Scholar 

  29. Tonchev V.D.: Combinatorial Configurations. Wiley, New York (1988).

    MATH  Google Scholar 

  30. Tonchev V.D.: Quasi-symmetric designs, codes, quadrics, and hyperplane sections. Geom. Dedicata 48, 295–308 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  31. Tonchev V.D.: Codes and designs, Chapter 15. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1229–1268. Elsevier, New York (1998).

    Google Scholar 

  32. Tonchev V.D.: Codes. In: Colbourn C.J., Dinitz J.F. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 667–702. Chapman & Hall/CRC, Boca Raton (2007).

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank Dieter Jungnickel, as well as the anonymous reviewers, for carefully reading the manuscript and suggesting several corrections and improvements. This research was supported by NSA Grant H98230-16-1-0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir D. Tonchev.

Additional information

Communicated by J. D. Key.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonchev, V.D. Linearly embeddable designs. Des. Codes Cryptogr. 85, 233–247 (2017). https://doi.org/10.1007/s10623-016-0304-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-016-0304-6

Keywords

Mathematics Subject Classification

Navigation