Advertisement

Designs, Codes and Cryptography

, Volume 85, Issue 1, pp 39–76 | Cite as

Efficient revocable identity-based encryption via subset difference methods

  • Kwangsu Lee
  • Dong Hoon Lee
  • Jong Hwan Park
Article

Abstract

Providing an efficient revocation mechanism for identity-based encryption (IBE) is very important since a user’s credential (or private key) can be expired or revealed. revocable IBE (RIBE) is an extension of IBE that provides an efficient revocation mechanism. Previous RIBE schemes essentially use the complete subtree (CS) scheme of Naor, Naor and Lotspiech (CRYPTO 2001) for key revocation. In this paper, we present a new technique for RIBE that uses the efficient subset difference (SD) scheme of Naor et al. instead of using the CS scheme to improve the size of update keys. Following our new technique, we first propose an efficient RIBE scheme in prime-order bilinear groups by combining the IBE scheme of Boneh and Boyen and the SD scheme and prove its selective security under the standard assumption. Our RIBE scheme is the first RIBE scheme in bilinear groups that has O(r) number of group elements in an update key where r is the number of revoked users. Next, we also propose another RIBE scheme in composite-order bilinear groups and prove its full security under static assumptions. Our RIBE schemes also can be integrated with the layered subset difference scheme of Halevy and Shamir (CRYPTO 2002) to reduce the size of a private key.

Keywords

Identity-based encryption Revocable identity-based encryption Key revocation Subset difference method Bilinear maps 

Mathematics Subject Classification

94A60 

Notes

Acknowledgments

Kwangsu Lee was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2016-R0992-16-1006). Dong Hoon Lee was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (R0126-16-1090).

References

  1. 1.
    Aiello W., Lodha S., Ostrovsky R.: Fast digital identity revocation (extended abstract). In: Krawczyk H. (ed.) CRYPTO ’98. Lecture Notes in Computer Science, vol 1462, pp. 137–152. Springer, Heidelberg (1998).Google Scholar
  2. 2.
    Attrapadung N., Imai H.: Conjunctive broadcast and attribute-based encryption. In: Shacham H., Waters B. (eds.) Pairing 2009. Lecture Notes in Computer Science, vol. 5671, pp. 248–265. Springer, Heidelberg (2009).Google Scholar
  3. 3.
    Bethencourt J., Sahai A., Waters B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer Society, Washington, DC (2007).Google Scholar
  4. 4.
    Boldyreva A., Goyal V., Kumar V.: Identity-based encryption with efficient revocation. In: Ning P., Syverson P.F., Jha S. (eds.) ACM Conference on Computer and Communications Security, pp. 417–426. ACM, New York (2008).Google Scholar
  5. 5.
    Boneh D., Boyen X.: Efficient selective-id secure identity-based encryption without random oracles. In: Cachin C., Camenisch J. (eds.) EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 223–238. Springer, Heidelberg (2004).Google Scholar
  6. 6.
    Boneh D., Franklin M.K.: Identity-based encryption from the weil pairing. In: Kilian J. (ed.) CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).Google Scholar
  7. 7.
    Boneh D., Waters B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan S.P. (ed.) TCC 2007. Lecture Notes in Computer Science, vol. 4392, pp. 535–554. Springer, Heidelberg (2007).Google Scholar
  8. 8.
    Boneh D., Sahai A., Waters B.: Functional encryption: definitions and challenges. In: Ishai Y. (ed.) TCC 2011. Lecture Notes in Computer Science, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).Google Scholar
  9. 9.
    Canetti R., Halevi S., Katz J.: Chosen-ciphertext security from identity-based encryption. In: Cachin C., Camenisch J. (eds.) EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 207–222. Springer, Heidelberg (2004).Google Scholar
  10. 10.
    Fiat A., Naor M.: Broadcast encryption. In: Stinson D.R. (ed.) CRYPTO ’93. Lecture Notes in Computer Science, vol. 773, pp. 480–491. Springer, Heidelberg (1993).Google Scholar
  11. 11.
    Gentry C.: Certificate-based encryption and the certificate revocation problem. In: Biham E. (ed.) EUROCRYPT 2003. Lecture Notes in Computer Science, vol. 2656, pp. 272–293. Springer, Heidelberg (2003).Google Scholar
  12. 12.
    Gentry C., Silverberg A.: Hierarchical id-based cryptography. In: Zheng Y. (ed.) ASIACRYPT 2002. Lecture Notes in Computer Science, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).Google Scholar
  13. 13.
    Gorbunov S., Vaikuntanathan V., Wee H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini R., Canetti R. (eds.) CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).Google Scholar
  14. 14.
    Goyal V., Pandey O., Sahai A., Waters B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer and Communications Security, pp. 89–98. ACM, New York (2006).Google Scholar
  15. 15.
    Halevy D., Shamir A.: The lsd broadcast encryption scheme. In: Yung M. (ed.) CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442, pp. 47–60. Springer, Heidelberg (2002).Google Scholar
  16. 16.
    Horwitz J., Lynn B.: Toward hierarchical identity-based encryption. In: Knudsen L.R. (ed.) EUROCRYPT 2002. Lecture Notes in Computer Science, vol. 2332, pp. 466–481. Springer, Heidelberg (2002).Google Scholar
  17. 17.
    Katz J., Sahai A., Waters B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart N.P. (ed.) EUROCRYPT 2008. Lecture Notes in Computer Science, vol. 4965, pp. 146–162. Springer, Heidelberg (2008).Google Scholar
  18. 18.
    Lee K., Lee D.H.: Improved hidden vector encryption with short ciphertexts and tokens. Des. Codes Cryptogr. 58(3), 297–319 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lee K., Choi S.G., Lee D.H., Park J.H., Yung M.: Self-updatable encryption: time constrained access control with hidden attributes and better efficiency. In: Sako K., Sarkar P. (eds.) ASIACRYPT 2013. Lecture Notes in Computer Science, vol. 8269, pp. 235–254. Springer, Heidelberg (2013).Google Scholar
  20. 20.
    Lee K., Koo W.K., Lee D.H., Park J.H.: Public-key revocation and tracing schemes with subset difference methods revisited. In: Kutylowski M., Vaidya J. (eds.) ESORICS 2014. Lecture Notes in Computer Science, vol. 8713, pp. 1–18. Springer, Heidelberg (2014).Google Scholar
  21. 21.
    Lee K., Kim I., Hwang S.O.: Privacy preserving revocable predicate encryption revisited. Secur. Commun. Netw. 8(3), 471–485 (2015).CrossRefGoogle Scholar
  22. 22.
    Lewko A.B.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval D., Johansson T. (eds.) EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 318–335. Springer, Heidelberg (2012).Google Scholar
  23. 23.
    Lewko A.B., Waters B.: New techniques for dual system encryption and fully secure hibe with short ciphertexts. In: Micciancio D. (ed.) TCC 2010. Lecture Notes in Computer Science, vol. 5978, pp. 455–479. Springer, Heidelberg (2010).Google Scholar
  24. 24.
    Lewko A.B., Okamoto T., Sahai A., Takashima K., Waters B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert H. (ed.) EUROCRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 62–91. Springer, Heidelberg (2010).Google Scholar
  25. 25.
    Lewko A.B., Sahai A., Waters, B.: Revocation systems with very small private keys. In: IEEE Symposium on Security and Privacy, pp. 273–285. IEEE Computer Society, Washington, DC (2010).Google Scholar
  26. 26.
    Libert B., Vergnaud D.: Adaptive-id secure revocable identity-based encryption. In: Fischlin M. (ed.) CT-RSA 2009. Lecture Notes in Computer Science, vol. 5473, pp. 1–15. Springer, Heidelberg (2009).Google Scholar
  27. 27.
    Martin T., Martin K.M., Wild P.R.: Establishing the broadcast efficiency of the subset difference revocation scheme. Des. Codes Cryptogr. 51(3), 315–334 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Micali S.: Efficient certificate revocation. Technical Report TM-542b, MIT Laboratory for Computer Science (1996).Google Scholar
  29. 29.
    Naor M., Nissim K.: Certificate revocation and certificate update. IEEE J. Sel. Areas Commun. 18(4), 561–570 (2000).CrossRefGoogle Scholar
  30. 30.
    Naor M., Pinkas B.: Efficient trace and revoke schemes. In: Frankel Y. (ed.) FC 2000. Lecture Notes in Computer Science, vol. 1962, pp. 1–20. Springer, Heidelberg (2000).Google Scholar
  31. 31.
    Naor D., Naor M., Lotspiech J.: Revocation and tracing schemes for stateless receivers. In: Kilian J. (ed.) CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp. 41–62. Springer, Heidelberg (2001).Google Scholar
  32. 32.
    Nieto J.M.G., Manulis M., Sun D.: Fully private revocable predicate encryption. In: Susilo W., Mu Y., Seberry J. (eds.) ACISP 2012. Lecture Notes in Computer Science, vol. 7372, pp. 350–363. Springer, Heidelberg (2012).Google Scholar
  33. 33.
    Okamoto T., Takashima K.: Hierarchical predicate encryption for inner-products. In: Matsui M. (ed.) ASIACRYPT 2009. Lecture Notes in Computer Science, vol. 5912, pp. 214–231. Springer, Heidelberg (2009).Google Scholar
  34. 34.
    Okamoto T., Takashima K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval D., Johansson T. (eds.) EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 591–608. Springer, Heidelberg (2012).Google Scholar
  35. 35.
    Park S., Lee K., Lee D.H.: New constructions of revocable identity-based encryption from multilinear maps. IEEE Trans. Inf. Forensic Secur. 10(8), 1564–1577 (2015).CrossRefGoogle Scholar
  36. 36.
    Sahai A., Waters B.: Fuzzy identity-based encryption. In: Cramer R. (ed.) EUROCRYPT 2005. Lecture Notes in Computer Science, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).Google Scholar
  37. 37.
    Sahai A., Seyalioglu H., Waters B.: Dynamic credentials and ciphertext delegation for attribute-based encryption. In: Safavi-Naini R., Canetti R. (eds.) CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp. 199–217. Springer, Heidelberg (2012).Google Scholar
  38. 38.
    Seo J.H., Emura K.: Efficient delegation of key generation and revocation functionalities in identity-based encryption. In: Dawson E. (ed.) CT-RSA 2013. Lecture Notes in Computer Science, vol. 7779, pp. 343–358. Springer, Heidelberg (2013).Google Scholar
  39. 39.
    Seo J.H., Emura K.: Revocable identity-based encryption revisited: security model and construction. In: Kurosawa K., Hanaoka G. (eds.) PKC 2013. Lecture Notes in Computer Science, vol. 7778, pp. 216–234. Springer, Heidelberg (2013).Google Scholar
  40. 40.
    Shamir A.: Identity-based cryptosystems and signature schemes. In: Blakley G.R., Chaum D. (eds.) CRYPTO ’84. Lecture Notes in Computer Science, vol. 196, pp. 47–53. Springer, Heidelberg (1984).Google Scholar
  41. 41.
    Su L., Lim H.W., Ling S., Wang H.: Revocable ibe systems with almost constant-size key update. In: Cao Z., Zhang F. (eds.) Pairing 2013. Lecture Notes in Computer Science, vol. 8365, pp. 168–185. Springer, Heidelberg (2013).Google Scholar
  42. 42.
    Waters B.: Efficient identity-based encryption without random oracles. In: Cramer R. (ed.) EUROCRYPT 2005. Lecture Notes in Computer Science, vol. 3494, pp. 114–127. Springer, Heidelberg (2005).Google Scholar
  43. 43.
    Waters B.: Dual system encryption: realizing fully secure ibe and hibe under simple assumptions. In: Halevi S. (ed.) CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677, pp. 619–636. Springer, Heidelberg (2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Sejong UniversitySeoulKorea
  2. 2.Korea UniversitySeoulKorea
  3. 3.Sangmyung UniversitySeoulKorea

Personalised recommendations