Abstract
We address the problem of determining when a plane algebraic cubic curve is complete as an (n, 3)-arc in \(\mathrm {PG}(2,q)\). Theoretical results are given for absolutely irreducible singular cubic curves, while computer based results are given for \(q\le 81\).
This is a preview of subscription content,
to check access.References
Anbar N., Bartoli D., Giulietti M., Platoni I.: Small complete caps from singular cubics, II. J. Algebraic Comb. 41, 185–216 (2015).
Ball S., Hirschfeld J.W.P.: Bounds on \((n;r)\)-arcs and their application to linear codes. Finite Fields Appl. 11, 326–336 (2005).
Bartoli D., Marcugini S., Pambianco F.: The non-existence of some NMDS codes and the extremal sizes of complete \((n,3)\)-arcs in \({\rm PG}(2, 16)\). Des. Codes Cryptogr. 72, 129–134 (2014).
Bartoli D., Marcugini S., Pambianco F.: Completeness of cubic curves in \({\rm PG} (2,q), q \le 81\), submitted.
Bierbrauer J.: Introduction to Coding Theory. Chapman and Hall/ CRC Press, Boca Raton (2004).
Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).
Coolsaet K., Sticker H.: The complete \((k,3)\)-arcs of \({\rm PG}(2, q), q\le 13\). J. Comb. Des. 20, 89–111 (2012).
De Groote R., Hirschfeld J.W.P.: The number of points on an elliptic cubic curve over a finite field. Eur. J. Comb. 1, 327–333 (1980).
Dodunekov S.M., Landjev I.N.: On near-MDS codes. In: Proceedings of the IEEE ISIT’94, Trondheim, Norway, p. 427 (1994).
Dodunekov S.M., Landjev I.N.: On near-MDS codes. J. Geom. 54, 30–43 (1995).
Giulietti M.: On plane arcs contained in cubic curves. Finite Fields Appl. 8, 69–90 (2002).
Giulietti M.: On the extendibility of Near-MDS Elliptic Codes. AAECC 15, 1–11 (2004).
Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford University Press, Oxford (1998).
Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory, and finite projective spaces: update 2001. In: Blokhuis A., Hirschfeld J.W.P., Jungnickel D., Thas J.A. (eds.) Developments in Mathematics Finite Geometries, 3, Kluwer Academic Publishers, Proceedings of the Fourth Isle of Thorns Conference, pp. 201–246 (2000).
Hirschfeld J.W.P., Voloch J.F.: The characterization of elliptic curves over finite fields. J. Aust. Math. Soc. Ser. A 45, 275–286 (1988).
Keedwell A.D.: Simple constructions for elliptic cubic curves with specified small numbers of points. Eur. J. Comb. 9, 463–481 (1988).
Schoof R.J.: Nonsingular plane cubic curves over finite fields. J. Comb. Theory Ser. A 46, 183–211 (1987).
Segre B.: Ovali e curve \(\sigma \) nei piani di Galois di caratteristica due. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat (8) 32, 785–790 (1962).
Segre B., Bartocci U.: Ovali ed altre curve nei piani di Galois di caratteristica due. Acta Arith. 18, 423–449 (1971).
Thas J.A.: Some results concerning \(((q+1)(n-1), n)-\) arcs. J. Comb. Theory Ser. A 19, 228–232 (1975).
Waterhouse W.G.: Abelian varieties over finite fields. Ann. Sci. Ecole Norm. Sup. 2, 521–560 (1969).
Acknowledgments
The authors would like to thank the anonymous referees for their helpful comments that contributed to improve the final version of this paper. Partially supported by the Italian Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) and by the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni (GNSAGA-INdAM).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J. W. P. Hirschfeld.
Rights and permissions
About this article
Cite this article
Bartoli, D., Marcugini, S. & Pambianco, F. On the completeness of plane cubic curves over finite fields. Des. Codes Cryptogr. 83, 233–267 (2017). https://doi.org/10.1007/s10623-016-0215-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-016-0215-6